Chapter 4

Memory Organization

Original lle

For details of the built-in I/0 features, refer
to the descriptions in Chapters 2 and 3.

For information about I/0 operations with
peripheral cards, refer to Chapter 6.

The Apple Ile’s microprocessor can address 65,536 (64K) memory locations.
All of the programmable storage (RAM and ROM) and input and output
devices are allocated locations in this 64K address space. Some functions
share the same addresses—but not at the same time.

For information about these shared address spaces, see the section
“Bank-Switched Memory” in this chapter and the sections “Other Uses of
/0 Memory Space” and “Expansion ROM Space” in Chapter 6.

The original version of the Apple lle, as well as the Apple II Plus and
Apple II, use the 6502 microprocessor. The 6502 lacks ten instructions
and two addressing modes found on the 65C02 of the enhanced Apple Ile,
but is otherwise functionally similar. For more information about the
differences between the two processors, see Appendix A. In this manual,
unless otherwise stated, the two processors are effectively the same.

All input and output in the Apple Ile is memory mapped. This means that
all devices connected to the Apple Ile appear to be memory locations to the
computer. In this chapter, the I/0 memory spaces are described simply as
blocks of memory.

Programmers often refer to the Apple Ile’s memory in 256-byte blocks called
pages. One reason for this is that a one-byte address counter or index
register can specify one of 256 different locations. Thus, page 0 consists of
memory locations from 0 to 255 (hexadecimal $00 to $FF), inclusive. Page 1
consists of locations 256 to 511 (hexadecimal $0100 to $01FF); note that the
page number is the high-order part of the hexadecimal address. Don’t
confuse this kind of page with the display buffers in the Apple Ile, which
are sometimes referred to as Page 1 and Page 2.

Main Memory Map

e e e A) LIV |
The map of the main memory address space in Figure 4-1 shows the
functions of the major areas of memory. For more details on the I/0 space
from 48K to 52K ($C000 through $CFFF), refer to Chapter 2 and Chapter 6;
the bank-switched memory in the memory space from 52K to 64K ($D000
through $FFFF) is described in the section “Bank-Switched Memory” later
in this chapter.

Chapter 4: Memory Organization

Figure 4-1. System Memory Map

FFFF
Bank-
ROM Switched
RAM
D000
CFFF
1/0
€000 /
BFFF
8000
TFFF
Main
RAM
4000
3FFF
0000

Main Memory Map

73

RAM Memory Allocation

T R e e e e ey
As Figure 4-1 shows, the major portion of the Apple Ile’s memory space is
allocated to programmable storage (RAM). Figure 4-2 shows the areas
allocated to RAM. The main RAM memory extends from location 0 to
location 49151 (hex $BFFF), and occupies pages 0 through 191
(hexadecimal $BF). There is also RAM storage in the bank-switched space
from 53248 to 65535 (hexadecimal $D000 to $FFFF), described in the
section “Bank-Switched Memory” later in this chapter, and auxiliary RAM,
described in the section “Auxiliary Memory and Firmware” later in this
chapter.

Figure 4-2. RAM Allocation Map

BFFF

Page 2

High-Resolution
Graphics
Display Buffers

Page 1

Page 2 | Text and Low-Resolution
Page 1 Graphics Display Buffers

<4 Reserved Pages

Chapter 4: Memory Organization

Important!

Reserved Memory Pages
s e e = |

Most of the Apple Ile’s RAM is available for storing your programs and data.
However, a few RAM pages are reserved for the use of the Monitor firmware
and the BASIC interpreters. The reserved pages are described in the
following sections.

The system does not prevent your using these pages, but if you do use
them, you must be careful not to disturb the system data they contain, or
you will cause the system to malfunction.

Page Zero

Several of the 656C02 microprocessor’s addressing modes require the use of
addresses in page zero, also called zero page. The Monitor, the BASIC
interpreters, DOS 3.3, and ProDOS all make extensive use of page zero.

To use indirect addressing in your assembly-language programs, you must
store base addresses in page zero. At the same time, you must avoid
interfering with the other programs that use page zero—the Monitor, the
BASIC interpreters, and the disk operating systems. One way to avoid
conflicts is to use only those page-zero locations not already used by other
programs. Tables 4-1 through 4-5 show the locations in page zero used by
the Monitor, Applesoft BASIC, Integer BASIC, DOS 3.3, and ProDOS.

As you can see from the tables, page zero is pretty well used up, except for a
few bytes here and there. It's hard to find more than one or two bytes that
aren’t used by either BASIC, ProDOS, the Monitor, or DOS. Rather than
trying to squeeze your data into an unused corner, you may prefer a safer
alternative: save the contents of part of page zero, use that part, then
restore the previous contents before you pass control to another program.

The 65C02 Stack

The 65C02 microprocessor uses page 1 as the stack—the place where
subroutine return addresses are stored, in last-in, first-out sequence. Many
programs also use the stack for temporary storage of the registers (via push
and pull operations). You can do the same, but you should use it sparingly.
The stack pointer is eight bits long, so the stack can hold only 256 bytes of
information at a time. When you store the 257th byte in the stack, the stack
pointer repeats itself, or wraps around, so that the new byte replaces the
first byte stored, which is now lost. This writing over old data is called stack
overflow, and when it happens, the program continues to run normally until
the lost information is needed, whereupon the program terminates
catastrophically.

RAM Memory Allocation 75

For more information about links, see the
section “Changing the Standard I/0 Links”
in Chapter 6.

See Chapter 6 for information on the
memory locations that are reserved for
peripheral cards.

For more information about the display
buffers, see the section “Video Display
Pages” in Chapter 2.

The Input Buffer

The GETLN input routine, which is used by the Monitor and the BASIC
interpreters, uses page 2 as its keyboard-input buffer. The size of this buffer
sets the maximum size of input strings. (Note: Applesoft uses only the first
237 bytes, although it permits you to type in 256 characters.) If you know
that you won'’t be typing any long input strings, you can store temporary
data at the upper end of page 2.

Link-Address Storage

The Monitor, ProDOS, and DOS 3.3 all use the upper part of page 3 for link
addresses or vectors.

BASIC programs sometimes need short machine-language routines. These
routines are usually stored in the lower part of page 3.

The Display Buffers

The primary text and low-resolution-graphics display buffer occupies
memory pages 4 through 7 (locations 1024 through 2047, hexadecimal $0400
through $07FF). This entire 1024-byte area is called text Page 1, and it is not
usable for program and data storage. There are 64 locations in this area that
are not displayed on the screen; these locations are reserved for use by the
peripheral cards.

Text Page 2, the alternate text and low-resolution-graphics display buffer,
occupies memory pages 8 through 11 (locations 2048 through 3071,
hexadecimal $0800 through $0BFF). Most programs do not use Page 2 for
displays, so they can use this area for program or data storage.

The primary high-resolution-graphics display buffer, called high-resolution
Page 1, occupies memory pages 32 through 63 (locations 8192 through
16383, hexadecimal $2000 through $3FFF). If your program doesn’t use
high-resolution graphics, this area is usable for programs or data.

High-resolution Page 2 occupies memory pages 64 through 95 (locations
16384 through 24575, hexadecimal $4000 through $5FFF). Most programs
use this area for program or data storage.

The primary double-high-resolution-graphics display buffer, called
double-high-resolution Page 1, occupies memory pages 32 through 63
(locations 8192 through 16383, hexadecimal $2000 through $3FFF) in both
main and auxiliary memory. If your program doesn't use high-resolution or
double-high-resolution graphics, this area of main memory is usable for
programs or data.

Chapter 4: Memory Organization

Table 4-1. Monitor Zero-Page Use

High Nibble Low Nibble of Address
of Address $0 $1 $2 $3 $4 $5 $6 $7 $8 $9 $A $B $C $D $E $F

$00

$10 o
$20
$30
$40
$50
$60
$70
$80
$90
$A0
$B0
$CO
$D0
$E0
$F0

* Byte used in original Apple Ile ROMs, now free.

Table 4-2. Applesoft Zero-Page Use

High Nibble Low Nibble of Address

of Address $0 $1 $2 $3 $4 $5 86 $7 $8 $9 $A $B $C $D SE SF
$00 L] L L] L]
$10 L L L] * L] L L] L] L L] L] L]

$20 e e .
330 L - L] L L] L] L]
$40

550 L] L L L L] . L] L] L] L L] L] L] L] (] L]
560 L] L] L L L] L L L] L L] L] L L] L] L L]
$TO L] L] L] L] L] L] L] ® L] L] L] L] [] L] L L]
580 L] [] L L L] L] L] L] L] L] ® L L] L] L] L]
590 L] L] L] L L] L] L L] L] L] L] L] L] L] L] L]
SAAAO L] L] L] L] L L] L] [] L] L] L] ® L] L] L] L]
$BO [] L] L L L L] L] L] L] [] L] L] L] L] L] []
SCO L] L] L] ® L] L] L] L] ® L] L L] L] L]

$DO L] L] L] (] L] L] L] L] L] L] [] L] [] ® L
$E0 L] L ® L] L] ® L] L] [] [] L]

$FO L] L] ® L] L] L] L] L] L] L] L]
RAM Memory Allocation 7

Table 4-3. Integer BASIC Zero-Page Use

High Nibble Low Nibble of Address
of Address $0 $1 $2 $3 $4 $5 $6 $7 $8 $9 SA $B $C $D $E $F

$00 B
$10
$20
$30
$40
$50
$60
$70
$80
$90
$A0
$B0
$CO
$DO
$EO
§F0

® & & & © & 0 @

® & & @ ° & @ @
*® & & & o o o @

® & @ & & @ & ©

® & & ° o & © o

® & & © © & ® ° @
® & & & & & & o o
® @ ¢ @ © @ @ & @
® & & o o @ @ & O
@ & & & o & & o ©
e @ & & & o @ & 0 0@
® & & & & @ & o o 9
® & @ © & o © & o @
® & & @ & @ @ & 9 O
@ @ & & @& & & © o
® & @ @ & & ° o O

Table 4-4. DOS 3.3 Zero-Page Use

High Nibble Low Nibble of Address
of Address $0 $1 $2 $3 $4 $5 $6 $7 88 $9 $A $B $C $D SE $F

$00

$10

$20 [] [] [] [] [] L]

$30 e o © o @

$4D ® [] L] ® [] L] L] ® ® [] L] L] L]

$50

$60 e o o o .
$70 .

$30

$90

$A0 .
$BO °

$CG [] [] [] []

$D0 .

$EO0

$FO0

Chapter 4: Memory Organization

Table 4-5. ProDOS MLI and Disk-Driver Zero-Page Use

High Nibble Low Nibble of Address
of Address $0 $1 $2 $3 $4 $5 $6 $7 $8 $§9 $A $B $C $D $E $F

$00 e o

$10

$20

$30 ® L] L] L] L] L
$40 L] L] L] L] L] ® L] L] L] L] L]
$50

$60

$70

$80

$90

$A0

$BO

$CO

$D0

$E0

$FO

Bank-Switched Memory

S R e R S e e R T B e g
The memory address space from 52K to 64K (hexadecimal $D000 through
$FFFF) is doubly allocated: it is used for both ROM and RAM. The 12K bytes
of ROM (read-only memory) in this address space contain the Monitor and
the Applesoft BASIC interpreter. Alternatively, there are 16K bytes of RAM
in this space. The RAM is normally used for storing either the Integer
BASIC interpreter or part of the Pascal Operating System (purchased
separately).

You may be wondering why this part of memory has such a split
personality. Some of the reasons are historical: the Apple Ile is able to run
software written for the Apple Il and Apple II Plus because it uses this part
of memory in the same way they do. It is convenient to have the Applesoft
interpreter in ROM, but the Apple Ile, like an Apple IT with a language card,
is also able to use that address space for other things when Applesoft is not
needed.

Bank-Switched Memory 79

You may also be wondering how 16K bytes of RAM is mapped into only 12K
bytes of address space. The usual answer is that it's done with mirrors, and
that isn't a bad analogy: the 4K-byte address space from 52K to 56K
(hexadecimal $D000 through $DFFF) is used twice.

Switching different blocks of memory into the same address space is called
bank switching. There are actually two examples of bank switching going
on here: first, the entire address space from 52K to 64K ($D000 through
$FFFF) is switched between ROM and RAM, and second, the address space
from 52K to 56K ($D000 to $DFFF) is switched between two different
blocks of RAM.

Figure 4-3. Bank-Switched Memory Map

FFFF
RAM
E000 ROM
DFFF
i RAM RAM

Setting Bank Switches

You switch banks of memory in the same way you switch other functions in
the Apple lle: by using soft switches. Read operations to these soft switches
do three things: select either RAM or ROM in this memory space; enable or
inhibit writing to the RAM (write-protect); and select the first or second
4K-byte bank of RAM in the address space $D000 to $DFFF.

AWarning Do not use these switches without careful planning. Careless switching
between RAM and ROM is almost certain to have catastrophic effects on
yOur prograr.

Chapter 4: Memory Organization

i

Table 4-6 shows the addresses of the soft switches for enabling all
combinations of reading and writing in this memory space. All of the
hexadecimal values of the addresses are of the form $C08x. Notice that
several addresses perform the same function: this is because the functions
are activated by single address bits. For example, any address of the form
$C08x with a 1 in the low-order bit enables the RAM for writing. Similarly,
bit 3 of the address selects which 4K block of RAM to use for the address
space $D000-$DFFF; if bit 3 is 0, the first bank of RAM is used, and if bit 3
is 1, the second bank is used.

When RAM is not enabled for reading, the ROM in this address space is
enabled. Even when RAM is not enabled for reading, it can still be written to
if it is write-enabled.

When you turn power on or reset the Apple Ile, it initializes the bank
switches for reading the ROM and writing the RAM, using the second bank
of RAM. Note that this is different from the reset on the Apple II Plus, which
didn’t affect the bank-switched memory (the language card). On the

Apple Ile, you can't use the reset vector to return control to a program in
bank-switched memory, as you could on the Apple II Plus.

Reset With Integer BASIC: When you are using Integer BASIC on the
Apple Ile, reset works correctly, restarting BASIC with your program
intact. This happens because the reset vector transfers control to DOS,
and DOS resets the switches for the current version of BASIC.

Bank-Switched Memory 81

Table 4-6. Bank Select Switches

Note: E means read the location, W means write anything to the location, B/W
means read or write, and B7 means read the location and then check bit 7.

Name Action Hex Function
R $C080 Read RAM; no write; use $D000 bank 2.
RR $C081 Read ROM; write RAM; use $D000 bank 2.
R $C082 Read ROM; no write; use $D000 bank 2.
RR $C083 Read and write RAM; use $D000 bank 2.
R $C088 Read RAM; no write; use $D000 bank 1.
RR $C089 Read ROM; write RAM; use $D000 bank 1.
R $C08A Read ROM; no write; use $D000 bank 1.

RR $CO8B Read and write RAM: use $D000 bank 1.
RDBNK2 R7 $C011 Read whether $D000 bank 2 (1) or bank 1 (0).
RDLCRAM R7 $C012 Reading RAM (1) or ROM (0).

ALTZP W $C008 Off: use main bank, page 0 and page 1.
ALTZP W $C009 On:use auxiliary bank, page 0 and page 1.
RDALTZP R7 $C016 Read whether auxiliary (1) or main (0) bank.

EReading and Writing to RAM Banks: Note that you can't read one
RAM bank and write to the other; if you select either RAM bank for
reading, you get that one for writing as well.

Reading RAM and ROM: You can’t read from ROM in part of the
bank-switched memory and read from RAM in the rest: specifically, you
can’t read the Monitor in ROM while reading bank-switched RAM. If you
want to use the Monitor firmware with a program in bank-switched RAM,
copy the Monitor from ROM (locations $F800 through $FFCB) into
bank-switched RAM. You can’t do this from Pascal or ProDOS.

Chapter 4: Memory Organization

83

D@
91
FF
g2

8B
97

83

18
58

88
18
g1

8B
8B
BE
18
B8
58

ce
ce

€9

ce
c9

ce

co

co

co

ce
ce

co

LDA
LDA
LDA
STA
LDA
STA
JSR

LDA
JSR

LDA
LDA
INC
JSR

LDA
INC
LDA
JSR

LDA
LDA
INC
INC
LDA
JSR

To see how to use these switches, look at the following section of an
assembly-language program:

$Co83
$CP83
#$D0
BEGIN
#$FF
END
RAMTST

$C@8B
RAMTST

scess
#$80
TSTNUM
WPTSINIT

scesg
TSTNUM
#PAT12K
WPTSINIT

$CP8B
$C@8B
RWMODE
TSTNUM
#PAT4K
WPTSINIT

*SELECT 2ND 4K BANK & READ/WRITE
*BY TWO CONSECUTIVE READS

*SET UP...

* ... NEW...

*...MAIN-MEMORY. ..
*...POINTERS...

*...FOR 12K BANK

*SELECT 1ST 4K BANK
*USE ABOVE POINTERS

*SELECT 1ST BANK & WRITE PROTECT
*SELECT 2ND BANK & WRITE PROTECT

*SELECT 1ST BANK & READ/MWRITE
*BY TWO CONSECUTIVE READS
*FLAG RAM IN READ/WRITE

The LDA instruction, which performs a read operation to the specified
memory location, is used for setting the soft switches. The unusual
sequence of two consecutive LDA instructions performs the two

consecutive reads that write-enable this area of RAM; in this case, the data

that are read are not used.

Reading Bank Switches

You can read which language card bank is currently switched in by reading
the soft switch at $C011. You can find out whether the language card or
ROM is switched in by reading $C012. The only way that you can find out
whether the language card RAM is write-enabled or not is by trying to write
some data to the card’s RAM space.

Bank-Switched Memory 83

Auxiliary Memory and Firmware

84

AWarning

e e = T I e e T e
By installing an optional card in the auxiliary slot, you can add more
memory to the Apple Ile. One such card is the Apple Ile 80-Column Text
Card, which has 1K bytes of additional RAM for expanding the text display
from 40 columns to 80 columns.

Another optional card, the Apple Ile Extended 80-Column Text Card, has
64K of additional RAM. A 1K-byte area of this memory serves the same
purpose as the memory on the 80-Column Text Card: expanding the text
display to 80 columns. The other 63K bytes can be used as auxiliary
program and data storage. If you use only 40-column displays, the entire
64K bytes is available for programs and data.

Do not attempt to use the auxiliary memeory from a BASIC program. The
BASIC interpreter uses several areas in main RAM, including the stack
and the zero page. If you switch to auxiliary memory in these areas, the
BASIC interpreter fails and you must reset the system and start over.

As you can see by studying the memory map in Figure 4-4, the auxiliary
memory is broken into two large sections and one small one. The largest
section is switched into the memory address space from 512 to 49151 ($0200
through $BFFF). This space includes the display buffer pages: as described
in the section “Text Modes” in Chapter 2, space in auxiliary memory is used
for one half of the 80-column text display. You can switch to the auxiliary
memory for this entire memory space, or you can switch just the display
pages: see the next section, “Memory Mode Switching.”

Soft Switches: If the only reason you are using auxiliary merory is for
the 80-column display, note that you can store into the display page in
auxiliary memory by using the 80STORE and PAGE2 soft switches
described in the section “Display Mode Switching” in Chapter 2.

The other large section of auxiliary memory is switched into the memory
address space from 52K to 64K ($D000 through $FFFF). This memory space
and the switches that control it are described earlier in this chapter in the
section “Bank-Switched Memory.” If you use the auxiliary RAM in this
space, the soft switches have the same effect on the auxiliary RAM that
they do on the main RAM: the bank switching is independent of the
auxiliary-RAM switching.

Chapter 4: Memory Organization

Figure 4-4. Memory Map With Auxiliary Memory

FFFF
Main Auxiliary
Bank- Bank-
Switched Switched
RAM RAM

ROM

D000
CFFF
€000 1/0
BFFF

Main

8000 Auxiliary
TFFF RAM

6000
5FFF

4000 High-Resolution
3FFF Graphics Display Buffers

2000
1FFF

Text and Low-Resolution
Graphics Display Buffers

Stack and Zero Page——

Bank Switches: Note that the soft switches for the bank-switched
memmory, described in the previous section, do not change when you
switch to auxiliary RAM. In particular, if ROM is enabled in the
bank-switched memory space before you switch to auxiliary memory, the
ROM will still be enabled after you switch. Any time you switch the
bank-switched section of auxiliary memory in and out, you must also
make sure that the bank switches are set properly.

When you switch in the auxiliary RAM in the bank-switched space, you also
switch the first two pages, from 0 to 511 ($0000 through $01FF). This part
of memory contains page zero, which is used for important data and base
addresses, and page one, which is the 65C02 stack. The stack and zero page
are switched this way so that system software running in the

Auxiliary Memory and Firmware 85

86

AWarning

bank-switched memory space can maintain its own stack and zero page
while it manipulates the 48K address space (from $0200 to $BFFF) in either
main memory or auxiliary memory.

Memory Mode Switching
T e e e

Switching the 48K section of memory is performed by two soft switches: the
switch named RAMRD selects main or auxiliary memory for reading, and
the one named RAMWRT selects main or auxiliary memory for writing. As
shown in Table 4-7, each switch has a pair of memory locations dedicated to
it, one to select main memory, and the other to select auxiliary memory.
Enabling the read and write functions independently makes it possible for a
program whose instructions are being fetched from one memory space to
store data into the other memory space.

Do not use these switches without careful planning. Careless switching
between main and auxiliary memories is almost certain to have
catastrophic effects on the operation of the Apple Ile. For example, if you
switch to auxiliary memory with no card in the slot, the program that is
running will stop and you will have to reset the Apple Ile and start over.

Writing to the soft switch at location $C008 turns RAMRD on and enables
auxiliary memory for reading; writing to location $C002 turns RAMRD off
and enables main memory for reading. Writing to the soft switch at location
$C005 turns RAMWRT on and enables the auxiliary memory for writing;
writing to location $C004 turns RAMWRT off and enables main memory for
writing. By setting these switches independently, you can use any of the
four combinations of reading and writing in main or auxiliary memory.

Auxiliary memory corresponding to text Page 1 and high-resolution graphics
Page 1 can be used as part of the address space from $0200 to $BFFF by
using RAMRD and RAMWRT as described above. These areas in auxiliary
RAM can also be controlled separately by using the switches described in
the section “Display Mode Switching” in Chapter 2. Those switches are
named 80STORE, PAGE2, and HIRES.

As shown in Table 4-7, the 80STORE switch functions as an enabling
switch: with it on, the PAGE2 switch selects main memory or auxiliary
memory. With the HIRES switch off, the memory space switched by PAGE2
is the text Page 1, from $0400 to $07FF; with HIRES on, PAGE2 switches
both text Page 1 and high-resolution graphics Page 1, from $2000 to $3FFF.

If you are using both the auxiliary-RAM control switches and the
auxiliary-display-page control switches, the display-page control switches
take priority: if 80STORE is off, RAMRD and RAMWRT work for the entire

Chapter 4: Memory Organization

The next section, “Auxiliary-Memory
Subroutines,” describes firmware that you
can call to help you switch between main
and auxiliary memory.

memory space from $0200 to $BFFF, but if 80STORE is on, RAMRD and
RAMWRT have no effect on the display page. Specifically, if 80STORE is on
and HIRES is off, PAGE2 controls text Page 1 regardless of the settings of
RAMRD and RAMWRT. Likewise, if 80STORE and HIRES are both on,
PAGE2 controls both text Page 1 and high-resolution graphics Page 1, again
regardless of RAMRD and RAMWRT.

A single soft switch named ALTZP (for alternate zero page) switches the
bank-switched memory and the associated stack and zero page area
between main and auxiliary memory. As shown in Table 4-7, writing to
location $C009 turns ALTZP on and selects auxiliary-memory stack and
zero page; writing to the soft switch at location $C008 turns ALTZP off and
selects main-memory stack and zero page for both reading and writing.

Table 4-7. Auxiliary-Memory Select Switches.

Name Function Location Notes
Hex Decimal

RAMRD Read auxiliary memory $C003 49155 -16381 Write
Read main memory $C002 49154 -16382 Write
Read RAMRD switch $C013 49171 -16366 Read

RAMWRT Write auxiliary memory $C005 49157 -16379 Write
Write main memory $C004 49156 -16380 Write
Read RAMWRT switch $C014 49172 -163564 Read

80STORE On: access display page $C001 49153 -16383 Write
Off: use RAMRD, RAMWRT $C000 49152 -16384 Write
Read 80STORE switch $C018 49176 -16360 Read

PAGE2 Page2on (aux. memory) $C0585 49237 -16299 *
Page 2 off (main memory) $C064 49236 -16300 *
Read PAGE2 switch §C01C 49180 -16366 Read

HIRES On: access high-res, pages $C057 49239 -16297 T
Off: use RAMRD, RAMWRT $C056 49238 -16298 ¥

Read HIRES switch $C01D 49181 -16355 Read
ALTZP Auxiliary stack & z.p. $C009 49161 -16373 Write
Main stack & zero page $C008 49160 -16374 Write
Read ALTZP switch $C016 49174 -16352 Read

* When 80STORE is on, the PAGE2 switch selects main or auxiliary display memory.

+When 80STORE is on, the HIRES switch enables you to use the PAGE2 switch to switch
between the high-resolution Page-1 area in main memory or auxiliary memory.

Auxiliary Memory and Firmware 87

When these switches are on, auxiliary
memory is being used; when they are off,
main memory is being used.

88

Important!

There are three more locations associated with the auxiliary-memory
switches. The high-order bits of the bytes you read at these locations tell
you the settings of the three soft switches described above. The byte you
read at location $C013 has its high bit set to 1 if RAMRD is on (auxiliary
memory is read-enabled), or 0 if RAMRD is off (the 48K block of main
memory is read-enabled). The byte at location $C014 has its high bit set to 1
if RAMWRT is on (auxiliary memory is write-enabled), or 0 if RAMWRT is
off (the 48K block of main memory is write-enabled). The byte at location
$C016 has its high bit set to 1 if ALTZP is on (the bank-switched area, stack,
and zero page in the auxiliary memory are selected), or 0 if ALTZP is off
(these areas in main memory are selected).

Sharing Memory: In order to have enough memory locations for all of
the soft switches and remain compatible with the Apple Il and

Apple II Plus, the soft switches listed in Table 4-7 share their memory
locations with the keyboard functions listed in Table 2-2. The
operations—read or write—shown in Table 4-7 for controlling the
auxiliary memory are just the ones that are not used for reading the
keyboard and clearing the strobe.

Aucxiliary-Memory Subroutines
A S S S T D B et]

If you want to write assembly-language programs that use auxiliary
memory but you don’t want to manage the auxiliary memory yourself, you
can use the built-in auxiliary-memory subroutines. These subroutines make
it possible to use the auxiliary memory without having to manipulate the
soft switches described in the previous section.

The subroutines described below make it easier to use auxiliary memory,
but they do not protect you from errors. You still have to plan your use of
auxiliary memory fo avoid catastrophic effects on your program.

You use these built-in subroutines the same way you use the 1/0
subroutines described in Chapter 3: by making subroutine calls to their
starting locations. Those locations are shown in Table 4-8.

Table 4-8. 48K RAM Transfer Routines

Name Action Hex Function

AUXMOVE JSR $C312 Moves data blocks between main and
auxiliary 48K memory.

XFER JMP $C314 Transfers program control between main and
auxiliary 48K memory.

Chapter 4: Memory Organization

AWarning

Moving Data to Auxiliary Memory

In your assembly-language programs, you can use the built-in subroutine
named AUXMOVE to copy blocks of data from main memory to auxiliary
memory or from auxiliary memory to main memory. Before calling this
routine, you must put the data addresses into byte pairs in page zero and set
the carry bit to select the direction of the move—main to auxiliary or
auxiliary to main.

Don't try to use AUXMOVE to copy data in page zero or page one (the
65C02 stack) or in the bank-switched memory ($D000-SFFFF).
AUXMOVE uses page zero all during the copy, so it can’t handle moves in
the memory space switched by ALTZP.

The pairs of bytes you use for passing addresses to this subroutine are
called A1, A2, and A4, and they are used for parameter passing by several of
the Apple Ile's built-in routines. The addresses of these byte pairs are
shown in Table 4-9.

Table 4-9. Parameters for AUXMOVE Routine
Note: The X, Y, and A registers are preserved by AUXMOVE.

Name Location Parameter Passed
Carry 1 = Move from main to auxiliary memory

' 0 = Move from auxiliary to main memory
AlL $3C Source starting address, low-order byte
AlH $3D Source starting address, high-order byte
A2L $3E Source ending address, low-order byte
A2H $3F Source ending address, high-order byte
A4L $42 Destination starting address, low-order byte
A4H $43 Destination starting address, high-order byte

Put the addresses of the first and last bytes of the block of memory you
want to copy into Al and A2. Put the starting address of the block of
memory you want to copy the data to into A4.

The AUXMOVE routine uses the carry bit to select the direction to copy
the data. To copy data from main memory to auxiliary memory, set the
carry bit; to copy data from auxiliary memory to main memory, clear the
carry bit.

Auxiliary Memory and Firmware 89

When you make the subroutine call to AUXMOVE, the subroutine copies the
block of data as specified by the A byte pairs and the carry bit. When it is
finished, the accumulator and the X and Y registers are just as they were
when you called AUXMOVE.

Transferring Control to Auxiliary Memory

You can use the built-in routine named XFER to transfer control to and from
program segments in auxiliary memory. You must set up three parameters
before using XFER: the address of the routine you are transferring to, the
direction of the transfer (main to auxiliary or auxiliary to main), and which
page zero and stack you want to use.

Table 4-10. Parameters for XFER Routine
Note: The X, Y, and A parameters are preserved by XFER.

Name or
Location Parameter Passed
Carry 1 = Transfer from main to auxiliary memory
0 = Transfer from auxiliary to main memory
Overflow 1 = Use page zero and stack in auxiliary memory
0 = Use page zero and stack in main memory
$03ED Program starting address, low-order byte
$03EE Program starting address, high-order byte

Put the transfer address into the two bytes at locations $03ED and $03EE,
with the low-order byte first, as usual. The direction of the transfer is
controlled by the carry bit: set the carry bit to transfer to a program in
auxiliary memory; clear the carry bit to transfer to a program in main
memory. Use the overflow bit to select which page zero and stack you want
to use: clear the overflow bit to use the main memory; set the overflow bit to
use the auxiliary memory.

After you have set up the parameters, pass control to the XFER routine by a
Jjump instruction, rather than a subroutine call. XFER saves the
accumulator and the transfer address on the current stack, then sets up the
soft switches for the parameters you have selected and jumps to the new
program.

Chapter 4: Memory Organization

T

AWarning

It is the programmer’s responsibility to save the current stack pointer at
$0100 in main memory and the alternate stack pointer at $0101 in
auxiliary memory before calling XFER and to restore them after regaining
control. Failure to do so will cause program errors.

The Reset Routine

For information about the I/0 links, see the
section “Changing the Standard 1/0 Links”
in Chapter 6.

For more information about peripheral-card
ROM, see the section “Peripheral-Card ROM
Space” in Chapter 6.

To put the Apple Ile into a known state when it has just been turned on or
after a program has malfunctioned, there is a procedure called the reset
routine. The reset routine is built into the Apple Ile’s firmware, and it is
initiated any time you turn power on or press while holding down
[conTRoL). The reset routine puts the Apple Ile into its normal operating
mode and restarts the resident program,

When you initiate a reset, hardware in the Apple Ile sets the
memory-controlling soft switches to normal: main board RAM and ROM are
enabled, and, if there is an 80-colurn text card in the auxiliary slot,
expansion slot 3 is allocated to the built-in 80-column firmware. Auxiliary
RAM is disabled and the bank-switched memory space is set up to read from
ROM and write to RAM, using the second bank at $D000.

The reset routine sets the display-controlling soft switches to display
40-column text Page 1 using the primary character set, then sets the
window equal to the full 40-column display, puts the cursor at the bottorn of
the screen, and sets the display format to normal.

The reset routine sets the keyboard and display as the standard input and
output devices by loading the standard I/0 links. It turns annunciators 0
and 1 off and annunciators 2 and 3 on, clears the keyboard strobe, turns off
any active peripheral-card ROM and outputs a bell (tone).

The Apple Ile has three types of reset: power-on reset, also called cold-start
reset; warm-start reset; and forced cold-start reset. The procedure described
above is the same for any type of reset. What happens next depends on the
reset vector, The reset routine checks the reset vector to determine whether
it is valid or not, as described later in this chapter in the section “The Reset
Vector.” If the reset was caused by turning the power on, the vector will not
be valid, and the reset routine will perform the cold-start procedure. If the
vector is valid, the routine will perform the warm-start procedure.

The Reset Routine 91

For more information about ProDOS and
the startup procedure, see the ProD0OS
Technical Reference Manual.

92

Important!

The Cold-Start Procedure
e e N T == el P P T

If the reset vector is not valid, either the Apple Ile has just been turned on
or something has caused memory contents to be changed. The reset routine
clears the display and puts the string Apple //e (Apple 1ronan
original Ile) at the top of the display. It loads the reset vector and the
validity-check byte as described below, then starts checking the expansion
slots to see if there is a disk drive controller card in one of them, starting
with slot 7 and working down.

If it finds a controller card, it initiates the startup (bootstrap) routine that
resides in the controller card’s firmware. The startup routine then loads
DOS or ProDOS from the disk in drive 1. When the operating system has
been loaded, it displays other messages on the screen. If there is no disk in
the disk drive, the drive motor just keeps spinning until you press

[CONTROL H RESET .

If the reset routine doesn’t find a controller card, or if you press

(CONTROL H RESET] again before the startup procedure has been completed,
the reset routine will continue without using the disk, and pass control to
the built-in Applesoft interpreter.

The Warm-Start Procedure
TS e e e s

Whenever you press [CONTROL H{ RESET] when the Apple Ile has already
completed a cold-start reset, the reset vector is still valid and it is not
necessary to reinitialize the entire system. The reset routine simply uses the
vector to transfer control to the resident program, which is normally the
built-in Applesoft interpreter. If the resident program is indeed Applesoft,
your Applesoft program and variables are still intact. If you are using DOS,
it is the resident program and it restarts either Applesoft or Integer BASIC,
whichever you were using when you pressed [CONTROL H{ RESET .

A program in bank-switched RAM cannot use the reset vector to regain
control after a reset, because the Apple Ile hardware enables ROM in the
bank-switched memory space. If you are using Integer BASIC, which is in
the bank-switched RAM, you are also using DOS, and it is DOS that
controls the reset vector and restarts BASIC.

Chapter 4: Memory Organization

Forced Cold Start

=R T gl i)

If a program has loaded the reset vector to point to the beginning of the
program, as described in the next section, pressing [CONTROL H RESET
causes a warm-start reset that uses the vector to transfer control to that
program. If you want to stop such a program without turning the power off
and on, you can force a cold-start reset by holding down [&] and [CONTROL],
then pressing and releasing (RESET .

Unconditional Restart: When you want to stop a program
unconditionally—for example, to start up the Apple Ile with some other
program—you should use the forced cold-start reset,

(S H coNTROL HRESET], instead of turning the power off and on.

Whenever you press [CONTROL H RESET), firmware in the Apple Ile always
checks to see whether either Apple key is down. If the [&] key is down, with
or without the [&] key, the firmware performs the self-test described later in
this chapter. If only the [&] key is down, the firmware starts a forced
cold-start reset. First, it destroys the program or data in memory by writing
two bytes of arbitrary data into each page of main RAM. The two bytes that
get written over in page 3 are the ones that contain the reset vector. The
reset routine then performs a normal cold-start reset.

The Reset Vector
== e—— = = saonetn)

When you reset the Apple Ile, the reset routine transfers control to the
resident program by means of an address stored in page 3 of main RAM.
This address is called a vector because it directs program control to a
specified destination. There are several other vector addresses stored in
page 3, as shown in Table 4-11, including the interrupt vectors described in
the section “Interrupts on the Enhanced Apple Ile” in Chapter 6, and the
ProDOS and DOS vectors described in the ProDOS Technical Reference
Manual and the Apple [T DOS Programmer’s Manual.

The cold-start reset routine stores the starting address of the built-in
Applesoft interpreter, low-order byte first, in the reset vector address at
locations 1010 and 1011 (hexadecimal $03F2 and $03F3). It then stores a
validity-check byte, also called the power-up byte, at location 1012
(hexadecimal $03F4). The validity-check byte is computed by performing
an exclusive-OR of the second byte of the vector with the constant 165
(hexadecimal $A5). Each time you reset the Apple Ile, the reset routine uses
this byte to determine whether the reset vector is still valid.

The Reset Routine 93

See “The User’s Interrupt Handler at $3FE”
in Chapter 6.

94

You can change the reset vector so that the reset routine will transfer
control to your program instead of to the Applesoft interpreter. For this to
work, you must also change the validity-check byte to the exclusive-OR of
the high-order byte of your new reset vector with the constant 165 ($A5). If
you fail to do this, then the next time you reset the Apple Ile, the reset
routine will determine that the reset vector is invalid and perform a
cold-start reset, eventually transferring control to the disk startup routine or
to Applesoft.

The reset routine has a subroutine that generates the validity-check byte
for the current reset vector. You can use this subroutine by doing a
subroutine call to location -1169 (hexadecimal $FB6F). When your program
finishes, it can return the Apple Ile to normal operation by restoring the
original reset vector and again calling the subroutine to fix up the
validity-check byte.

Table 4-11. Page 3 Vectors

Vector

Address Vector Function

$3F0 Address of the subroutine that handles BRK requests (normally
$3F1 $59, SFA).

$3r2 Reset vector (see text).

$3F3

$3F4 Power-up byte (see text).

$3F5 Jump instruction to the subroutine that handies Applesoft &
$3F6 commands (normally $4C, $58, $FF).

$3F7

$3F8 Jump instruction to the subroutine that handles user

$3F9 commands.

$3FA

$3FB Jump instruction to the subroutine that handles non-maskable
$3FC interrupts.

$3FD

$3FE Interrupt vector (address of the subroutine that handles

$3FF interrupt requests).

Chapter 4: Memory Organization

AWarning

Automatic Self-Test
[Ecse=po = e 1]

If you reset the Apple Ile by holding down [&] and while
pressing and releasing [RESET), the reset routine will start running the
built-in self-test. Successfully running this test assures you that the
Apple Ile is operational.

The self-test routine tests the Apple Ile’s programmable memory by
writing and then reading it. All programs and data in programmable
memory when you run the self-test are destroyed.

The self-test takes several seconds to run. The screen will display some
patterns in low resolution mode which will change rapidly just before the
self-test finishes. If the test finishes normally, the Apple Ile displays
system 0K and waits for you to restart the system.

If you have been running a program, some soft switches might be on when
you run the self-test. If this happens, the self-test will display a message
such as

10U FLAG ES:1

Turn the power off for several seconds, then turn it back on and run the
self-test again. If it still fails, there is really something wrong; to get it
corrected, contact your authorized Apple dealer for service.

The Reset Routine 95

Chapter 5

Using the Monitor

The starting addresses for all of the
standard subroutines are listed in
Appendix B.

The System Monitor is a set of subroutines in the Apple Ile firmware, The
Monitor provides a standard interface to the built-in 1/0 devices described
in Chapter 2. The 1/0 subroutines described in Chapter 3 are part of the
System Monitor,

ProDOS, DOS 3.3, and the BASIC interpreters use these subroutines by
direct calls to their starting locations, as described for the I /0 subroutines
in Chapter 3.

If you wish, you can call the standard subroutines from your programs in
the same fashion.

You can perform most of the Monitor functions directly from the keyboard.
This chapter tells you how to use the Monitor to

o look at one or more memory locations
o change the contents of any location

o write programs in machine language to be executed directly by the
Apple Ile’s microprocessor

save blocks of data and programs onto cassette tape and read them back
in again

move and compare blocks of memory

search for data bytes and ASCII characters in memory

invoke other programs from the Monitor

invoke the Mini-Assembler.

a

O o0ooao

Invoking the Monitor

98

The System Monitor starts at memory location $FF69 (decimal 65385

or -151). To invoke the Monitor, you make a CALL statement to this location
from the keyboard or from a BASIC program. When the Monitor is running,
its prompting character, an asterisk (*), appears on the left side of the
display screen, followed by a blinking cursor.

To use the Monitor, you type commands at the keyboard. When you have
finished using the Monitor, you return to the BASIC language you were
previously using by pressing [CONTROL H RESET), by pressing

then or by typing 3D#6, which executes the
resident program—usually Applesoft—whose address is stored in a jump

instruction at location $3D0.

Chapter 5: Using the Monitor

Syntax of Monitor Commands

See “Summary of Monitor Commands” at
the end of this chapter.

To give a command to the Monitor, you type a line on the keyboard, then
press (RETURN }. The Monitor accepts the line using the standard 1/0
subroutine GETLN, described in Chapter 3. A Monitor command can be up
to 255 characters in length, ending with a carriage return.

A Monitor command can include three kinds of information: addresses, data
values, and command characters. You type addresses and data values in
hexadecimal notation. Hexadecimal notation uses the ten decimal digits
(0-9) and the first six letters (A-F) to represent the sixteen values from

0to 15. A pair of hexadecimal digits represent values from 0 to 255,
corresponding to a byte, and a group of four hexadecimal digits can
represent values from 0 to 65,536, corresponding to a word. Any address in
the Apple Ile can be represented by four hexadecimal digits.

When the command you type calls for an address, the Monitor accepts any
group of hexadecimal digits. If there are fewer than four digits in the group,
it adds leading zeros; if there are more than four hexadecimal digits, the
Monitor uses only the last four digits. It follows a similar procedure when
the command syntax calls for two-digit data values,

Each command you type consists of one command character, usually the
first letter of the command name. When the command is a letter, it can be
either uppercase or lowercase. The Monitor recognizes 23 different
command characters. Some of them are punctuation marks, some are
letters, and some are control characters.

Note: Although the Monitor recognizes and interprets control characters
typed on an input line, they do not appear on the screen.

This chapter contains many examples of the use of Monitor commands. In
the examples, the commands and values you type are shown in a normal
typeface and the responses of the Monitor are in a computer typeface. Of
course, when you perform the examples, all of the characters that appear
on the display screen will be in the same typeface. Some of the data values
displayed by your Apple Ile may differ from the values printed in these
examples, because they are variables stored in programmable memory.

Syntax of Monitor Commands 99

Monitor Memory Commands

JLLL

When you use the Monitor to examine and change the contents of memory,
it keeps track of the address of the last location whose value vou inquired

about and the address of the location that is next to have its value changed.
These are called the last opened location and the next changeable location.

Examining Memory Contents
[A s e S]

When you type the address of a memory location and press (RETURN], the
Monitor responds with the address you typed, a dash, a space, and the value
stored at that location, like this:

*E000
E@BB- 29
*33
8033- AA

Each time the Monitor displays the value stored at a location, it saves the
address of that location as the last opened location and as the next
changeable location.

Memory Dump

e

When you type a period (.) followed by an address, and then press
(RETURN), the Monitor displays a memory dump: the data values stored at
all the memory locations from the one following the last opened location to
the location whose address you typed following the period. The Monitor
saves the last location displayed as both the last opened location and the
next changeable location. In these examples, the amount of data displayed
by the Monitor depends on how much larger than the last opened location
the address after the period is.

Chapter 5: Using the Monitor

*20
p820- 08

*2B
ge21- 28 @9 18 OF @C 88 B8
8828- A8 86 DB 87

*300
8300- 99

*315

6381- B9 8@ 88 BA 8A BA 99
#388- 88 88 C8 DB F4 A6 2B A9
#310- 89 85 27 AD CC 83

* 32A

§316- 85 41

8318- 84 49 BA 4A 4A 4A 4A B9
p328- C@ 85 3F A9 5D 85 3E 28
§328- 43 83 20

*

When the Monitor performs a memory dump, it starts at the location
immediately following the last opened location and displays that address
and the data value stored there. It then displays the values of successive
locations up to and including the location whose address you typed, but
only up to eight values on a line. When it reaches a location whose address
is a multiple of eight—that is, one that ends with an 8 or a 0—it displays
that address as the beginning of a new line, then continues displaying more
values.

After the Monitor has displayed the value at the location whose address you
specified in the command, it stops the memory dump and sets that location
as both the last opened location and the next changeable location. If the
address specified on the input line is less than the address of the last
opened location, the Monitor displays only the address and value of the
location following the last opened location.

Monitor Memory Commands 101

102

You can combine the two commands, opening a location and dumping
memory, by simply concatenating them: type the first address, a period, and
the second address. This combination of two addresses separated by a
period is called a memory range.

*+300.32F

8368- 99 B9 8@ 088 8A RAA PA 99
p308- ## 88 C8 DB F4 A6 2B A9
p318- P9 85 27 AD CC 83 85 41
#318- 84 48 BA 4A 4A 4A 4A 09
p328- C@ 85 3F A9 5D 85 3E 28
#328- 43 B3 2@ 46 83 AS 3D 4D

*30.40

p838- AA 89 FF AA 85 C2 @5 C2
pe38- 1B FD DP B3 3C 8P 40 0P
pe48- 38

+E015.E025

E@16- 4C ED FD

E@18- A9 28 C5 24 BP 8C A9 8D
EB28- AP 87 28 ED FD A9

Pressing by itself causes the Monitor to display one line of a
memory dump; that is, a memory dump from the location following the last
opened location to the next multiple-of-eight boundary. The Monitor saves
the address of the last location displayed as the last opened location and the
next changeable location.

*5
8865- 289

*|_RETURN
ge 8@

*| RETURN
ppes- 069 9P PP 00 0P 60 PO @0

*32
8832- FF

*(RETURN |
AA B8 C2 85 C2

*(RETURN]
p938- 1B FD D@ £3 3C 88 3F 88

Chapter 5: Using the Monitor

Changing Memory Contents

AWarning

e S S N e i © S R SRt S I
The previous section showed you how to display the values stored in the
Apple Ile’s memory; this section shows you how to change those values.
You can change any location in RAM—programmable memory—and you
can also change the soft switches and output devices by changing the
locations assigned to them.

Use these commands carefully. If vou change the zero-page locations
used by Applesoft, ProDOS, or DOS, you may lose programs or data stored
in memory.

Changing One Byte

et i)

The previous commands keep track of the next changeable location; these
commands make use of it. In the next example, you open location 0, then
type a colon (:) followed by a value.

*()

geeo- 280
=5F

The contents of the next changeable location have just been changed to the
value you typed, as you can see by examining that location: '

*(
8008- SF

*

You can also combine opening and changing into one operation by typing an
address followed by a colon and a value. In the example, you type the
address again to verify the change.

*302:42
+302
8382- 42

-

When you change the contents of a location, the value that was contained
in that location disappears, never to be seen again. The new value will
remain until you replace it with another value.

Changing Memory Contents 103

104

Changing Consecutive Locations

You don’t have to type a separate command with an address, a colon, a
value, and for each location you want to change. You can change
the values of up to 85 consecutive locations at a time (or even more, if you
omit leading zeros from the values) by typing only the initial address and
colon followed by all the values separated by spaces, and ending with
(ReTURN]. The Monitor will duly store the consecutive values in
consecutive locations, starting at the location whose address you typed.
After it has processed the string of values, it takes the location following the
last changed location as the next changeable location. Thus, you can
continue changing consecutive locations without typing an address on the
next input line by typing another colon and more values. In these exarmples,
you first change some locations, then examine them to verify the changes.

+300:6901 20EDFD4C03
+300
g38@- 69

*(RETURN]
1 20 ED FD 4C 80 83

+10:0123

#4567

*10.17

P010- 90 01 P2 03 04 85 P6 07

ASCII Input Mode

e - ¥ 18)

The enhanced Apple Ile has an ASCII input mode that lets you enter ASCIT
characters just as you can their hexadecimal ASCII equivalents by
preceding the literal character with an apostrophe (). This means that ‘A is
the same as $C1 and 'B is the same as $C2 to the Monitor. The ASCII value
for any character following an apostrophe is used by the Monitor.

Chapter 5: Using the Monitor

Important!

Original lle

Each character to be placed in memory should be delimited by a leading
apostrophe (") and a trailing space. The only exception to this rule is that
the last character in the line is followed with a return character instead of a
space. The following example would enter the string “Hooray for sushi!” at
$0300 in memory.

*300:$H &0 |Osr1a1y| ﬂf!o 1r) :S !u)S ihai)!

ASCII input mode sets the high bit of the code for a character that you
enter. So A will equal $C1, not $41.

| The original Apple Ile does not have an ASCII input mode.

Moving Data in Memory
S S LN PR S I G e (]

You can copy a block of data stored in a range of memory locations from one
area in memory to another by using the Monitor's MOVE command. To
move a range of memory, you must tell the Monitor both where the data is
now situated in memory (the source locations) and where you want the
copy to go (the destination locations). You give this information to the
Monitor by means of three addresses: the address of the first location in the
destination and the addresses of the first and last locations in the source. .
You specify the starting and ending addresses of the source range by
separating them with a period. You separate the destination address from
the range addresses with a less-than character (<<), which you may think
of as an arrow pointing in the direction of the move. Finally, you tell the
Monitor that this is a MOVE command by typing the letter M (in either
lowercase or uppercase). The format of the complete MOVE command looks
like this:

ldestination| << |start| . lend| M

When you type the actual command, the words in braces should be replaced
by hexadecimal addresses, and the braces and spaces should be omitted.

Changing Memory Contents 105

See the section “Special Tricks With the
Monitor” later in this chapter for an
interesting application of this feature.

Here are some examples of Monitor commands, including some memory
moves. First, you examine the values stored in one range of memory, then
store several values in another range of memory; the actual MOVE
commands end with the letter M.

*0F

peee- SF @0 85 87 0P 60 PP PO
pope- PO 00 PP 90 PO 0P PO @0

*300:A9 8D 20 ED FD A9 45 20 DA FD 4C 00 03
*300.30C

8386- A9 8D 28 ED FD AS 45 29
8388- DA FD 4C @90 @3

*(<<300.30CM
+0.C

fgep- A9 8D 20 ED FD A9 45 29
pge8- DA FD 4C @@ 83

*310<8 AM
*310.312

8318- DA FD 4C
*2<T.9M

*(.C

B8e8- AS 8D 280 DA FD AS 45 29
68@8- DA FD 4C 88 83

*

The Monitor moves a copy of the data stored in the source range of locations
to the destination locations. The values in the source range are left
undisturbed. The Monitor remembers the last location in the source range
as the last opened location, and the first location in the source range as the
next changeable location. If the second address in the source range
specification is less than the first, then only one value (that of the first
location in the range) will be moved.

If the destination address of the MOVE command is inside the source range
of addresses, then strange (and sometimes wonderful) things happen: the
locations between the beginning of the source range and the destination
address are treated as a sub-range and the values in this sub-range are
replicated throughout the source range.

Chapter 5: Using the Monitor

See the section “Special Tricks With the
Monitor” later in this chapter.

Comparing Data in Memory
e o=

You can use the VERIFY command to compare two ranges of memory using
the same format you use to move a range of memory from one place to
another. In fact, the VERIFY command can be used immediately after a
MOVE command to make sure that the move was successful.

The VERIFY command, like the MOVE command, needs a range and a
destination. The syntax of the VERIFY command is

|destination| << {start} . {end} V

The Monitor compares the values in the source locations with the values in
the locations beginning at the destination address. If any values don’t
match, the Monitor displays the address at which the discrepancy was
found and the two values that differ. In the example, you store data values
in the range of locations from 0 to $D, copy them to locations starting at
$300 with the MOVE command, and then compare them using the VERIFY
command. When you use the VERIFY command after you change the value
at location 6 to $E4, it detects the change.

+(:D7 F2 E9 F4 F4 E5 EE A0 E2 F9 A0 C3 C4 C5
*300<0.DM

*300<<0.DV

*6:E4

*300<<0.DV

#@pe-E4 C(EE)D

If the VERIFY command finds a discrepancy, it displays the address of the
location in the source range whose value differs from its counterpart in the
destination range. If there is no discrepancy, VERIFY displays nothing. The
VERIFY command leaves the values in both ranges unchanged. The last
opened location is the last location in the source range, and the next
changeable location is the first location in the source range, just as in the
MOVE command. If the ending address of the range is less than the starting
address, the values of only the first locations in the ranges will be
compared. Like the MOVE command, the VERIFY command also does
unusual things if the destination address is within the source range.

Changing Memory Contents 107

Original ile

Searching for Bytes in Memory
I e e e R e S|

The SEARCH command lets you search for one or two bytes (either
hexadecimal values or ASCII characters) in a range of memory. You must
type in the ASCII string (or hexadecimal number or numbers) in reverse of
the order that they appear in memory. Think of the SEARCH command as
looking for items in a last-in, first-out queue.

The syntax of the SEARCH command is
|value or ASCII| <C|start].{end|S

If the byte (or two byte sequence) that you specify is in the specified
memory range, the Monitor will return with a list of the addresses where
that byte (or byte sequence) occurs. If the byte (or byte sequence) is not in
the range, the Monitor just displays the prompt.

The following example looks for the character string L0 in memory
between $0300 and $03FF.

*O'L<<300.3FFS
High Bit Set: Remember that ASCII input mode sets the high-order bit of
each character that you enter.
The next example searches for the two-byte sequence $FF11.
*11FF<<300.3FFS

You can't search for a two-byte sequence with a high byte of 0. The Monitor
ignores the high byte and searches for the low byte only. The sequence
00FF is seen by the Monitor SEARCH command as FF.

The Monitor in the original Apple lle does not recognize the SEARCH
command.

Examining and Changing Registers

108

e e s e
The microprocessor’s register contents change continuously whenever the
Apple Ile is running any sort of program, such as the Monitor. The Monitor
lets you see what the register contents were when you invoked the Monitor
or a program that you were debugging stopped at a break (BRK). The
Monitor also lets you set 65C02 register values before you execute a
program with the GO command,

Chapter 5: Using the Monitor

When you call the Monitor, it stores the contents of the microprocessor’s
registers in memory. The registers are stored in the order A, X, Y, P
(processor status register), and S (stack pointer), starting at location $45
(decimal 69). When you give the Monitor a GO command, the Monitor loads
the registers from these five locations before it executes the first instruction
in your program.

Pressing and then invokes the Monitor's EXAMINE
command, which displays the stored register values and sets the location

containing the contents of the A register as the next changeable location.
After using the EXAMINE command, you can change the values in these
locations by typing a colon and then typing the new values separated by
spaces. In the following example, you display the registers, change the first
two, and then display them again to verify the change.

#*CONTROL HE]

A=BA X=FF Y=D8 P=B@# S=F8
=:B0 02

*[CONTROL HE]
A=BE X=82 Y=D8 P=B@ S=F8

Monitor Cassette Tape Commands

The Apple e has two jacks for connecting an audio cassette tape recorder.
With a recorder connected, you can use the Monitor commands described
later in this section to save the contents of a range of memory onto a
standard cassette and recall it for later use.

Saving Data on Tape

= W R i - st 1

The Monitor’s WRITE command saves the contents of up to 65,536 memory
locations on cassette tape. To save a range of memory on tape, give the
Monitor the starting and ending addresses of the range, followed by the
letter W (for WRITE), like this:

start| . jend| W

Monitor Cassette Tape Commands 109

Don’t press yet: first, put the tape recorder in record mode and let
the tape run for a second, then press [RETURN }. The Monitor will write a
ten-second tone onto the tape and then write the data. The tone acts as a
leader: later, when the Monitor reads the tape, the leader enables the
Monitor to get in step with the signal from the tape. When the Monitor is
finished writing the range you specified, it will sound a bell (beep) and
display a prompt. You should rewind the tape and label it with the memory
range that’s on the tape and what it's supposed to be.

Here's a small example you can save and use later to try out the READ
command. Remember that you must start the cassette recorder in record
mode before you press after typing the WRITE command.

+(:FF FF AD 30 C0 88 D0 04 C6 01 F0 08 CA
DO F6 A6 00 4C 02 00 60

*(.14

po@d- FF FF AD 38 Co 88 D@ 84
pp@es- Cc #1 F@ 88 CA DB F6 A6
pe18- 8@ 4C 62 09 ©0

+(.14W

*

1t takes about 35 seconds total to save the values of 4,096 memory locations
preceded by the ten-second leader onto tape. This works out to an average
data transfer rate of about 1,350 bits per second.

The WRITE command writes one extra value on the tape after it has
written the values in the memory range. This extra value is the checksum,
which is the eight-bit partial sum of all values in the range. When the
Monitor reads the tape, it uses this value to determine if the data has been
written and read correctly. (See the next section.)

Reading Data From Tape
e s = at——]

Once you've saved a memory range onto tape with the Monitor’'s WRITE
command, you can read that memory range back into the computer by
using the Monitor's READ command. The data values you've stored on the
tape need not be read back into the same memory range from whence they
came; you can tell the Monitor to put those values into any memory range in
the computer’s memory, provided that it's the same size as the range you
saved.

Chapter 5: Using the Monitor

The format of the READ command is the same as that of the WRITE
command, except that the command letter is R:

{start} . {end} R

Once again, after typing the command, don’t press (RETURN). Instead, start
the tape recorder in play mode and wait a few seconds. Although the
WRITE command puts a ten-second leader tone on the beginning of the
tape, the READ command needs only three seconds of this leader to lock on
to the signal from the tape. You should let a few seconds of tape go by before
you press to allow the tape recorder’s output to settle down to a
steady tone.

This example has two parts. First, you set a range of memory to zero, verify
the contents of memory, and then type the READ command, but don't press

(RETURN]
*0:000000000000000000000

+(.14

pep0- 09 PP 0D B0 OO0 PO PO @0
peps- 0@ 09 00 00 90 20 00 0O
pe18- pp 60 60 @0

*(.14R

Now start the cassette running in play mode, wait a few seconds, and press
(RETURN]. After the Monitor sounds the bell (beep) and displays the prompt,
examine the range of memory to see that the values from the tape were
read correctly:

+0.14

6@ee- FF FF AD 32 C@ 88 D@ 84
ppg8- Cc 81 F8 88 CA DP F6 AG
pe18- 68 4C 62 PP 680

*

After the Monitor has read all the data values on the tape, it reads the
checksum value. It computes the checksum on the data it read and
compares it to the checksum from the tape. If the two checksums differ, the
Monitor sends a beep to the speaker and displays ERR. This warns you that
there was a problem reading the tape and that the values stored in memory
aren't the values that were recorded on the tape. If the two checksums
match, the Monitor will just send out a beep and display a prompt.

Monitor Cassette Tape Commands 111

Miscellaneous Monitor Commands

These Monitor commands enable you to change the video display format
from normal to inverse and back, and to assign input and output to
accessories in expansion slots.

Inverse and Normal Display
i o S AU S e e e e

You can control the setting of the inverse-normal mask location used by the
COUT subroutine (described in Chapter 3) from the Monitor so that all of
the Monitor's output will be in inverse format. The INVERSE command, I,
sets the mask such that all subsequent inputs and outputs are displayed in
inverse format. To switch the Monitor’s output back to normal format, use
the NORMAL command, N.

*0.F

pepe- 8A OB BC 8D @E @F De 084
@pPp8- Cc 81 FO @8 CA DB F6 A6
*]

«0.F

pepB- A BB BC 8D @E BF D@ B4
pees- Ce 01 FO @88 CA D@ F6 A6
*N

*(.F

pes@- A 6B BC @D PE @F D@ 064
pees- Ce 01 F@ @8 CA DB F6 AB

Back to BASIC

[ET———————]

Use the BASIC command, [CONTROL }[B], to leave the Monitor and enter the
BASIC that was active when you entered the Monitor. Normally, this is
Applesoft BASIC, unless you deliberately switched to Integer BASIC. Any
program or variables that you had previously in BASIC will be lost. If you
want to reenter BASIC with your previous program and variables intact, use

the CONTINUE BASIC command, [CONTROL HC].

Chapter 5: Using the Monitor

AWarning

If you are using DOS 8.3 or ProDOS, press (CONTROL H{ RESET] or type

3DBG

to return to the language you were using, with your program and variables
intact.

That's a Number Not a Letter: 1If you use 3D0G, make sure that the
third character you type is a zero, not a letter 0. The letter G is the
Monitor's GO command, described in the section “Machine-Language
Programs” later in this chapter.

Redirecting Input and Output
===

The PRINTER command, activated by a diverts all output
normally destined for the screen to an interface card in a specified
expansion slot, from 1 to 7. There must be an interface card in the specified
slot, or you will lose control of the computer and your program and variables
may be lost. The format of the command is

{slot number| (P]

A PRINTER command to slot number 0 will switch the stream of output
characters back to the Apple Ile’s video display.

Don't give the PRINTER command with slot number 0 to deactivate the
80-column firmware, even though you used this command to activate it in
slot 3. The command works, but it just disconnects the firmware, leaving
some of the soft switches set for 80-column display.

In much the same way that the PRINTER command switches the output
stream, the KEYBOARD command substitutes the interface card in a
specified expansion slot for the Apple Ile’s normal input device, the
keyboard. The format for the KEYBOARD command is

{slot number} [CONTROL HK]

A slot number of 0 for the KEYBOARD command directs the Monitor to
accept input from the Apple Ile’s built-in keyboard.

The PRINTER and KEYBOARD commands are the exact equivalents of the
BASIC commands PR# and IN#.

Miscellaneous Monitor Commands 113

Hexadecimal Arithmetic
e — = A SO

The Monitor will also perform one-byte hexadecimal addition and
subtraction. Just type a line in one of these formats:

value| + |value,
(value| - [value|

The Apple Ile performs the arithmetic and displays the result, as shown in
these examples:

#20+13
=33
*4A-C
=3F
*FF+4
=83
*34
=FF

*

Special Tricks With the Monitor

T ——————— T T N N e A e |
This section describes some more complex ways of using the Monitor
commands.

Multiple Commands
e]

You can put as many Monitor commands on a single line as you like, as long
as you separate them with spaces and the total number of characters in the
line is less than 254. Adjacent single-letter commands such as L, S, [, and N
need not be separated by spaces.

You can freely intermix all of the commands except the STORE ()
command. Since the Monitor takes all values following a colon and places
them in consecutive memory locations, the last value in a STORE must be
followed by a letter command before another address is encountered. You
can use the NORMAL command as the required letter command in such
cases; it usually has no effect and can be used anywhere.

Chapter 5: Using the Monitor

[

B

B
-
4

In the following example, you display a range of memory, change it, and
display it again, all with one line of commands.

+300.307 300:18 69 1 N 300.302

p300- 00 @0 0@ 00 PO B8P PP B0
p3pp- 18 69 01

*

If the Monitor encounters a character in the input line that it does not
recognize as either a hexadecimal digit or a valid command character, it
executes all the commands on the input line up to that character, then
grinds to a halt with a noisy beep and ignores the remainder of the input
line.

Filling Memory

e T S R

The MOVE command can be used to replicate a pattern of values
throughout a range of memory. To do this, first store the pattern in the first
locations in the range:

*300:11 22 33

*

Remember the number of values in the pattern: in this case, it is 3. Use the
number to compute addresses for the MOVE command, like this:

Istart+number| < |start| . {end-number| M

This MOVE command will first replicate the pattern at the locations
immediately following the original pattern, then replicate that pattern
following itself, and so on until it fills the entire range.

*+303<300.32DM
*300.32F

p3p@- 11 22 33 11 22 33 11 22
g3@88- 33 11 22 33 11 22 33 11
#318- 22 33 11 22 33 11 22 33
#318- 11 22 33 11 22 33 11 22
p32@8- 33 11 22 33 11 22 33 11
p328- 22 33 11 22 33 11 22 33

*

Special Tricks With the Monitor 115

116

You can do a similar trick with the VERIFY command to check whether a
pattern repeats itself through memory. This is especially useful to verify
that a given range of memory locations all contain the same value. In this
example, you first fill the memory range from $0300 to $0320 with zeros and
verify it, then change one location and verify again, to see the VERIFY
command detect the discrepancy:

*300:0
*301<<300.31IFM
*+301<<300.31FV
*304:02
*301<<300.31FV

8383-88 (22)
8304-02 (8@

*

Repeating Commands
EEseamaseae——_——a

You can create a command line that repeats one or more commands over
and over. You do this by beginning the part of the command line that you
want to repeat with a letter command, such as N, and ending it with the
sequence 34:n, where n is a hexadecimal number that specifies the position
in the line of the command where you want to start repeating; for the first
character in the line, n=0. The value for n must be followed with a space in
order for the loop to work properly.

This trick takes advantage of the fact that the Monitor uses an index
register to step through the input buffer, starting at location $0200. Each
time the Monitor executes a command, it stores the value of the index at
location $34; when that command is finished, the Monitor reloads the index
register with the value at location $34. By making the last command change
the value at location $34, you change this index so that the Monitor picks up
the next command character from an earlier point in the buffer.

Chapter 5: Using the Monitor

The only way to stop a loop like this is to press ([CONTROL { RESET J; that is
how this example ends.

*N 300 302 34:0
9308- 11
#382- 33
p388- 11
p302- 33
p308- 11
8382- 33
8388- 11
8382- 33
8388- 11
8382- 33
B388- 11
p3p2- 33
8380

Creating Your Own Commands
=St o

The USER command, forces the Monitor to jump to memory
location $03F8. You can put a JMP instruction there that jumps to your own
machine-language program. Your program can then examine the Monitor’s
registers and pointers or the input buffer itself to obtain its data. For
example, here is a program that displays everything on the input line after
the (ConTROL H Y. The program starts at location $0300; the command line
that starts with $03F8 stores a jump to $0300 at location $03F8.

+300:A4 34 B9 00 02 20 ED FD C8 C9 8D DO F5 4C 69 FF
+3F8:4C 00 03

*[CONTROL}{Y] THIS IS A TEST
THIS IS A TEST

Special Tricks With the Monitor 117

Machine-Language Programs

118

e = e T S T e s,
The main reason to program in machine language is to get more speed. A
program in machine language can run much faster than the same program
written in high-level languages such as BASIC or Pascal, but the
machine-language version usually takes a lot longer to write. There are
other reasons to use machine language: you might want your program to do
something that isn’t included in your high-level language, or you might just
enjoy the challenge of using machine language to work directly on the bits
and bytes.

Boning Up on Machine Language: If you have never used machine
language before, you'll need to learn the 65C02 instructions listed in
Appendix A. To become proficient at programming in machine language,
you'll have to spend some time at it and study at least one of the books on
6502 programming listed in the bibliography. With the books and
Appendix A, you'll have the needed information to program the 65C02.

You can get a hexadecimal dump of your program, move it around in
memory, or save it on tape and recall it using the commands described in
the previous sections. The Monitor commands in this section are intended
specifically for you to use in creating, writing, and debugging
machine-language programs.

Running a Program
[==Saras e ey L e

The Monitor command you use to start execution of your machine-language
program is the GO command. When you type an address and the letter G,
the Apple Ile starts executing machine language instructions starting at the
specified location. If you just type the G, execution starts at the last opened
location. The Monitor treats this program as a subroutine: it should end with
an RTS (return from subroutine) instruction to transfer control back to the
Monitor.

Chapter 5: Using the Monitor

The word mnemonic comes from the same
root as memory and refers to
abbreviations that are easier to remember
than the hexadecimal operation codes
themselves: for example, for clear carry
you write CLC instead of $18.

The Monitor has some special features that make it easier for you to write
and debug machine-language programs, but before you get into that, here is
a small machine-language program that you can run using only the simple
Monitor commands already described. The program in the example merely
displays the letters A through Z: you store it starting at location $0300,
examine it to be sure you typed it correctly, then type 300G to start it
Tunning.

+300:A9 C1 20 ED FD 18 69 1 C9 DB DO F6 60
*300.30C

g388- A9 C1 20 ED FD 18 €9 81
#388- C9 DB D@ F6 68

*300G
ABCDEFGHIJKLMNOPQRSTUVKWXYZ

Disassembled Programs
le=—=saa——cacnu o e = A=

Machine-language code in hexadecimal isn't the easiest thing in the world
to read and understand. To make this job a little easier, machine-language
programs are usually written in assembly language and converted into
machine-language code by programs called assemblers.

Since programs that translate assembly language into machine language are
called assemblers, a program like the Monitor's LIST command that
translates machine language into assembly language is called a
disassembler.

The Monitor’s LIST command displays machine-language code in
assembly-language form. Instead of unformatted hexadecimal gibberish, the
LIST command displays each instruction on a separate line, with a
three-letter instruction name, or mnemonic, and a formatted hexadecimal
operand. The LIST command also converts the relative addresses used in
branch instructions to absolute addresses.

The Monitor LIST command has the format

{location| L

Machine-Language Programs 119

120

The LIST command starts at the specified location and displays as much
memory as it takes to make up a screenfull (20 lines) of instructions, as
shown in the following example:

*300L

p300- A9 C1 LDA #$C1
p382- 20 ED FD JSR $FDED
#306- 18 cLC

#386- 69 21 ADC #$81
g388- C9 DB CmMP #$DB
838A- D8 Fe BNE $p382
#38cC- 68 RTS

838D- 8@ BRK

#30E- e BRK

838F - L]) BRK

#318- e BRK

8311- 1] BRK

#312- ge BRK

8313- 1] BRK

8314- e BRK

#316- 2@ BRK

8316~ e BRK

B317- e BRK

g318- e BRK

#319- e BRK

The first seven lines of this example are the assembly-language form of the
program you typed in the previous example. The rest of the lines are BRK
instructions only if this part of memory has zeros in it: other values will be
disassembled as other instructions.

The Monitor saves the address that you specify in the LIST command, but
not as the last opened location used by the other commands. Instead, the
Monitor saves this address as the program counter, which it uses only to
point to locations within programs. Whenever the Monitor performs a LIST
command, it sets the program counter to point to the location immediately
following the last location displayed on the screen, so that if you type
another LIST command it will display another screenful of instructions,
starting where the previous display left off,

Chapter 5: Using the Monitor

The Mini-Assembler

Original lle

e e e e =]
Without an assembler, you have to write your machine language program,
take the hexadecimal values for the opcodes and operands, and store them
in memory using the commands covered in the previous sections. That is
exactly what you did when you ran the previous examples.

The Monitor includes an assembler called the Mini-Assembler that lets you
enter machine-language programs directly from the keyboard of your Apple.
ASCII characters can be entered in Mini-Assembler programs, exactly as
you enter them in the Monitor. Note that the Mini-Assembler doesn’t accept
labels; you must use actual values and addresses.

Starting the Mini-Assembler
EEEpEsTEeese s S oaean)

To start the Mini-Assembler first invoke the Monitor by typing cALL-151

and then from the Monitor, type ! followed by (RETURN]. The
Monitor prompt character then changes from * to 1.

When you finish using the Mini-Assembler, press from a blank
line to return to the Monitor.

Restrictions
e U

The Mini-Assembler supports only the subset of 65C02 instructions that are
found on the 6502,

Before you can use the Mini-Assembler on the original Apple Ile, you have
to be running Integer BASIC. When you start up the computer using DOS
or either BASIC, the Apple Ile loads the Integer BASIC interpreter from
the file named INTBASIC into the bank-switched RAM. Here's how to
start the Mini-Assembler on an original Apple [le:

1. Start Integer BASIC from DOS 3.3 by typing INT [RETURN].
2. After the Integer prompt character (>) and a cursor appear, enter

the Monitor by typing CALL -151[RETURN].
3. Now start the Mini-Assembler by typing F6666 [RETURN].

The Mini-Assembler 121

Using the Mini-Assembler
S e — e — e |

The Mini-Assembler saves one address, that of the program counter. Before
you start to type a program, you must set the program counter to point to
the location where you want the Mini-Assembler to store your program. Do
this by typing the address followed by a colon.

After the colon, type the mnemonic for the first instruction in your program
followed by a space and the operand of the instruction. Now press
(RETURN]. The Mini-Assembler converts the line you typed into
hexadecimal, stores it in memory beginning at the location of the program
counter, and then disassembles it again and displays the disassembled line.
It then displays a prompt on the next line.

t]

Now the Mini-Assembler is ready to accept the second instruction in your

program. To tell it that you want the next instruction to follow the first,

don’t type an address or a colon: just type a space and the next instruction’s
Formats for operands are listed in Table mnemonic and operand, then press (RETURN J. The Mini-Assembler

5-1. assembles that line and waits for another.
1300:LDX #02
9308- A2 B2 LDX #$02
'+ LDA $0,X
2302- BS 08 LDA $00,X
1 STA $10.X
8304 95 19 STA $10,X
1 DEX
#306- CA DEX
' STA $C030
#387- 8D 39 CP STA $CP30
1 BPL $302
#30A- 18 F6 BPL $@8302
1 BRK
g38Cc- @@ BRK

If the line you type has an error in it, the Mini-Assembler beeps loudly and
displays a caret (*) under or near the offending character in the input line.
Most common errors are the result of typographical mistakes: misspelled
mnemonics, missing parentheses, and so forth. The Mini-Assembler also
rejects the input line if you forget the space before or after a mnemonic or

122 Chapter 5: Using the Monitor

include an extraneous character in a hexadecimal value or address. If the
destination address of a branch instruction is out of the range of the branch
(more than 127 locations distant from the address of the instruction), the
Mini-Assembler flags this as an error.

There are several different ways to leave the Mini-Assembler and reenter
the Monitor. On an enhanced Apple Ile only, simply press ata
blank line.

Original lle | Onanoriginal Apple Ile, type the Monitor command $FF69G.

On any Apple Ile, you can press (CONTROL H{RESET), Which warm starts
BASIC, then type

CALL -151

Your assembly-language program is now stored in memory. You can display
it with the LIST command:

*3001

g308- A2 B2 LDX #s@2
g382- BS 00 LDA $88,X
#3@4- 95 10 STA $18,X
#386- CA DEX

@387- 8D 38 C#@ STA $C830
p38A- 18 F6 BPL $8382
p38c- 09 BRK

g38D- 00 BRK

@30E- 00 BRK

#38F- 00 BRK

g310- 08 BRK

8311- 00 BRK

g312- 08 BRK

$313- 08 BRK

g314- 00 BRK

#316- 00 BRK

2316- 00 BRK

#317- 00 BRK

g318- 00 BRK

#319- @0 BRK

*

The Mini-Assembler 123

See Appendix A for more information about
65C02 (and 65602) instructions.

124

Mini-Assembler Instruction Formats
e, e s s e

The Apple Mini-Assembler recognizes 56 mnemonics and 13 addressing
formats. These constitute the 6502 subset of the 65C02 instruction set. The
mnemonics are standard, as used in the Synertek Programming Manual
(Apple part number A2L0003), but the addressing formats are somewhat
different. Table 5-1 shows the Apple standard address-mode formats for
6502 assembly language.

Table 5-1. Mini-Assembler Address Formats

Addressing Mode Format
Accumulator *
Implied *
Immediate #${value}
Absolute ${address}
Zero page ${address}
Indexed zero page ${address;,x
$laddresst,Y
Indexed absolute $1addressl,x
$address},Y
Relative ${address}
Indexed indirect (${address},X)
Indirect indexed (8{address}),Y
Absolute indirect (${address})

* These instructions have no operands.

An address consists of one or more hexadecimal digits. The Mini-Assembler
interprets addresses the same way the Monitor does: if an address has fewer
than four digits, the Mini-Assembler adds leading zeros; if the address has
more than four digits, then it uses only the last four.

Dollar Signs: In this manual, dollar signs ($) in addresses signify that
the addresses are in hexadecimal notation. They are ignored by the
Mini-Assembler and may be omitted when typing programs.

Chapter 5: Using the Monitor

There is no syntactical distinction between the absolute and zero-page
addressing modes. If you give an instruction to the Mini-Assembler that can
be used in both absolute and zero-page mode, the Mini-Assembler assembles
that instruction in absolute mode if the operand for that instruction is
greater than $FF, and it assembles it in zero-page mode if the operand is less
than $0100.

Instructions in accumulator mode and implied addressing mode need no
operands.

Branch instructions, which use the relative addressing mode, require the
target address of the branch. The Mini-Assembler calculates the relative
distance to use in the instruction automatically. If the target address is more
than 127 locations distant from the instruction, the Mini-Assembler sounds
a bell (beep), displays a caret (=) under the target address, and does not
assemble the line.

If you give the Mini-Assembler the mnemonic for an instruction and an
operand, and the addressing mode of the operand cannot be used with the
instruction you entered, the Mini-Assembler will not accept the line.

Summary of Monitor Commands

Here is a summary of the Monitor commands, showing the syntax for each
one.

Examining Memory
N st e W GRS

|adrs} Examines the value contained in
one location.

[adrs1|.{adrs2| Displays the values contained in all
locations between {adrs1| and
|adrs2].

Displays the values in up to eight
locations following the last opened
location.

Summary of Monitor Commands 125

Changing the Contents of Memory

Moving and Comparing
T e S e R VP

|dest| <|start|.\end|M

\dest| <<|start|.|end|V

The Examine Command
[S—ruives s s pn i enEsraaess i o]

CONTROL H E]

The Search Command
|="Sarn e s e]

|val| <|start|.lend|S

Cassette Tape Commands

|start].|end|W

Istart|.Jend|R

Chapter 5: Using the Monitor

Stores the values in consecutive
memory locations starting at |adrs|.
Stores values in mermory starting at
the next changeable location.

Copies the values in the range
start|.|end| into the range
beginning at |dest|.

Compares the values in the range
Istart|./end| to those in the range
beginning at |dest|.

Displays the locations where the
contents of the 65C02’s registers are

stored and opens them for changing.

Displays the address of the first
occurrence of |val| in the specified
range beginning at |start|.

Writes the values in the memory
range (start|.lend| onto tape,
preceded by a ten-second leader.
Reads values from tape, storing
them in memory beginning at |start|
and stopping at |end|. Prints ERR if
an error occurs.

Miscellaneous Monitor Commands

[Sets inverse display mode.

N Sets normal display mode.

Enters the language currently active
(usually Applesoft).

Returns to the language currently
active (usually Applesoft).

{val|+|val| Adds the two values and prints the
hexadecimal result,

val|-|val| Subtracts the second value from the
first and prints the result.

|slot| (7] Diverts output to the device whose

interface card is in slot number
slot). If {slot|=0, accepts input from
the keyboard.

Jumps to the machine-language
subroutine at location $3F8.

Running and Listing Programs

ladrs|G Transfers control to the machine
language program beginning at
ladrs|
jadrs;.

ladrs|L Disassembles and displays 20

instructions, starting at adrs|.
Subsequent LIST commands
display 20 more instructions.

Summary of Monitor Commands 127

Original lle

The Mini-Assembler
s o

The Mini-Assembler is available on an original Apple Ile only when
Integer BASIC is active. See the earlier section “The Mini-Assembler.”

F666G

$|command|

$FF69G

Chapter 5: Using the Monitor

Invokes the Mini-Assembler on the
original Apple Ile.

Invokes the Mini-Assembler on the
enhanced Apple Ile.

Executes a Monitor command from
the Mini-Assembler on the original
Apple Ile.

Leaves the Mini-Assembler on the
original Apple Ile.

Leaves the Mini-Assembler on the
enhanced Apple Ile.

Chapter 6 Progrém_rhing for Peripheral Cards

129

Il Plus, Il

Original lle

The seven expansion slots on the Apple Ile’s main circuit board are used for
installing circuit cards containing the hardware and firmware needed to
interface peripheral devices to the Apple Ile. These slots are not simple I/0
ports; peripheral cards can access the Apple Ile's data, address, and control
lines via these slots. The expansion slots are numbered from 1 to 7, and
certain signals, described below, are used to select a specific slot.

The Apple 1T and Apple II Plus have an eighth expansion slot: slot
number . On those models, slot 0 is normally used for a language card or
a ROM card; the functions of the Apple Il Language Card are built into the
main circuit board of the Apple Ile.

Interrupt support on the enhanced Apple Ile requires that special attention
be paid to cards designed to be in slot 3. A description of what you need to
watch for is given at the end of this chapter.

The interrupt support built into the enhanced Apple Ile is an enhanced
and expanded version of the interrupt support in the original Apple Ile,

Peripheral-Card Memory Spaces

130

Because the Apple Ile's microprocessor does all of its [/0 through memory
locations, portions of the Apple Ile’'s memory space have been allocated for
the exclusive use of the cards in the expansion slots. In addition to the
memory locations used for actual [/0, there are memory spaces available
for programmable memory (RAM) in the main memory and for read-only
memory (ROM or PROM) on the peripheral cards themselves.

The memory spaces allocated for the peripheral cards are described below.
Those memory spaces are used for small dedicated programs such as I/0
drivers. Peripheral cards that contain their own driver routines in firmware
like this are called intelligent peripherals. They make it possible for you to
add peripheral hardware to your Apple Ile without having to change your
programs, provided that your programs follow normal practice for data
input and output.

Peripheral-Card 1/O Space

T —— P S |

Each expansion slot has the exclusive use of sixteen memory locations for
data input and output in the memory space beginning at location $C090.
Slot 1 uses locations $C090 through SCO9F, slot 2 uses locations $COAQ
through $COAF, and so on through location $COFF, as shown in Table 6-1.

Chapter 6: Programming for Peripheral Cards

' These memory locations are used for different 1/0 functions, depending on
the design of each peripheral card. Whenever the Apple [le addresses one of
I the sixteen 1/0 locations allocated to a particular slot, the signal on pin 41
Signals for which the active state is loware of that slot, called DEVICE SELECT”, switches to the active (low) state.
marked with a prime (*). This signal can be used to enable logic on the peripheral card that uses the
four low-order address lines to determine which of its sixteen I/0 locations
I is being accessed.

Table 6-1, Peripheral-Card [/0 Memory Locations Enabled by DEVICE SELECT’

Slot Locations Slot Locations

1 $C090-$CO9F b $CODO-$CODF
2 SCOAD-$COAF 6 $COE0-SCOEF
3 $COBO-$COBF 7 $COF0-$COFF
4 $C0OCO-$COCF

Peripheral-Card ROM Space

One 256-byte page of memory space is allocated to each accessory card.
This space is normally used for read-only memory (ROM or PROM) on the
card with driver programs that control the operation of the peripheral
device connected to the card.

The page of memory allocated to each expansion slot begins at location
$Cn00, where n is the slot number, as shown in Table 6-2 and Figure 6-3.
Whenever the Apple Ile addresses one of the 256 ROM memory locations
allocated to a particular slot, the signal on pin 1 of that slot, called 1/0
SELECT, switches to the active (low) state. This signal enables the ROM or
PROM devices on the card, and the eight low-order address lines determine
which of the 256 memory locations is being accessed.

Peripheral-Card Memory Spaces 131

See the section “1/0 Programming
Suggestions” later in this chapter.

Important!

Table 6-2. Peripheral-Card ROM Memory Locations Enabled by I/0 SELECT”

Slot Locations Slot Location

1 $C100-8C1FF b 8CH00-$CAFF
2 $C200-$C2FF 6 3C600-$COFF
3 $C300-SC3FF 7 $C700-8CTFF
4 $C400-SCAFF

Expansion ROM Space

o]

In addition to the small areas of ROM memory allocated to each expansion
slot, peripheral cards can use the 2K-byte memory space from $C800 to
SCFFF for larger programs in ROM or PROM, This memory space is called
expansion ROM space. (See the memory map in Figure 6-3). Besides being
larger, the expansion ROM memory space is always at the same locations
regardless of which slot is occupied by the card, making programs that
occupy this memory space easier to write.

This memory space is available to any peripheral card that needs it. More
than one peripheral card can have expansion ROM on it, but only one of
them can be active at a time.

Each peripheral card that uses expansion ROM must have a circuit on it to
enable the ROM. The circuit does this by a two-stage process: first, it sets a
flip-flop when the /0 SELECT” signal, pin 1 on the slot, becomes active
(low); second, it enables the expansion ROM devices when the [/0
STROBE' signal, pin 20 on the slot, becomes active (low). Figure 6-1 shows
a typical ROM-enable circuit.

The 1/0 SELECT” signal on a particular slot becomes active whenever the
Apple Ile’s microprocessor addresses a location in the 256-byte ROM address
space allocated fo that slot. The I/0 STROBE’ signal on all of the expansion
slots becomes active (low) when the microprocessor addresses a location in
the expansion-ROM memory space, $C800-$CFFF. The I/0 STROBE' signal
is used to enable the expansion-ROM devices on a peripheral card. (See
Figure 6-1.)

If there is an 80-column text card installed in the auxiliary slot, some of
the functions normally associated with slot 3 are performed by the
80-column text card and the built-in 80-column firmware. With the
80-column text card installed, the I /0 STROBE’ signal is not available on
slot 3, so firmware in expansion ROM on a card in slot 3 will not run.

Chapter 6: Programming for Peripheral Cards

Figure 6-1. Expansion ROM Enable Circuit

(1/0 SELECT’ }— S ENABLE 1
— Latch -
M“’ R 2K Byte

—— ENABLE 2
(1/0 STROBE } > ROM
D i AO to ALD N

A program on a peripheral card can get exclusive use of the expansion ROM
memory space by referring to location SCFFF in its initialization phase. This
location is special: all peripheral cards that use expansion ROM must
recognize a reference to SCFFF as a signal to reset their ROM-enable
flip-flops and disable their expansion ROMs. Of course, doing so also
disables the expansion ROM on the card that is about to use it, but the next
instruction in the initialization code sets the flip-flop in the expansion-ROM
enable circuit on the card.

A card that needs to use the expansion ROM space must first insert its slot
address ($Cn) in $07F8 before it refers to SCFFF. This allows interrupting
devices to reenable the card’s expansion ROM after interrupt handling is
finished. Once its slot address has been inserted in $07F8, the peripheral
card has exclusive use of the expansion memory space and its program can
jurap directly into the expansion ROM.

Figure 6-2. ROM Disable Address Decoding

To RESET, ROM Enable
Flip-Flop

Peripheral-Card Memory Spaces 133

134

Important!

As described earlier, the expansion-ROM disable circuit resets the enable
flip-flop whenever the 65C02 addresses location $CFFF. To do this, the
peripheral card must detect the presence of $CFFF on the address bus. You
can use the I/0 STROBE' signal for part of the address decoding, since it is
active for addresses from $C800 through SCFFF. If you can afford to
sacrifice some ROM space, you can simplify the address decoding even
further and save circuitry on the card. For example, if you give up the last
256 bytes of expansion ROM space, your disable circuit only needs to detect
addresses of the form $CFxx, and you can use the minimal disable-decoding
circuitry shown in Figure 6-2.

Applesoft addresses two locations in the $CFxx space, thereby resetting
the enable flip-flop. If your peripheral device is going to be used with
Applesoft programs, you must either use the full address decoding or else
enable the expansion ROM each time it is needed.

Peripheral-Card RAM Space

===t ———— s s g

There are 56 bytes of main memory allocated to the peripheral cards, eight
bytes per card, as shown in Table 6-3. These 56 locations are actually in the
RAM memory reserved for the text and low-resolution graphics displays,
but these particular locations are not displayed on the screen and their
contents are not changed by the built-in output routine COUT1. Programs in
ROM on peripheral cards use these locations for temporary data storage.

Table 6-3. Peripheral-Card RAM Memory Locations

Base Slot Number
Address 1 2 3* 4 5 6 7

$0478 $0479 $047A $047B* $047C $047D SO4TE S04TF
$04F8 $04F9 SO4FA $04FB* $04FC SO4FD SO4FE $O4FF
$0678 $0579 $OBTA $057B* $05TC 807D $OSTE $057F
$06F8 $05F9 SO5FA $05FB* S05FC SO5FD $05FE $05FF
$0678 $0679 S06TA S067B* $067C $067D $067E $067F
$06F8 $06F9 $06FA S06FB* S$O6FC $06FD $06FE $06FF
$0778 $0779 $07T7A SOTTB* $077C $077D $07TE $077F
$07F8 $07TF9 SOTFA $OTFB* $07TFC $07FD $0TFE $O7FF

*If there is a card in the auxiliary slot, it takes over these locations.

Chapter 6: Programming for Peripheral Cards

AWarning

A program on a peripheral card can use the eight base addresses shown in
the table to access the eight RAM locations allocated for its use, as shown in
the next section, “I/0 Programming Suggestions.”

The Apple lle firmware sets the value of $04FB to $FF on a reset, even if
there is no 80-column card installed.

I/0 Programming Suggestions

Important!

e s e R e e e R S e e R e S R
A program in ROM on a peripheral card should work no matter which slot
the card occupies. If the program includes a jump to an absolute location in
one of the 256-byte memory spaces, then the card will work only when it is
plugged into the slot that uses that memory space. If you are writing the
program for a peripheral card that will be used by many people, you should
avoid placing such a restriction on the use of the card.

To function properly no matter which slot a peripheral card is installed
in, the program in the card’s 256-byte memory space must not make any
absolute references to itself. Instead of using jump instructions, you
should force conditions on branch instructions, which use relative
addressing.

The first thing a peripheral-card used as an I/0 device must do when called
is to save the contents of the Apple Ile’s microprocessor’s registers.
(Peripheral cards not being used as I/0 devices do not need to save the
registers.) The device should save the register's contents on the stack, and
restore them just before returning control to the calling program. If there is
RAM on the peripheral card, the information may be stored there.

Most single-character 1/0 is done via the microprocessor’s accurnulator. A
character being output through your subroutine will be in the accumulator
with its high bit set when your subroutine is called. Likewise, if your
subroutine is performing character input, it must leave the character in the
accumulator with its high bit set when it returns to the calling program.

1/0 Programming Suggestions 135

Finding the Slot Number With ROM Switched In
e e R T

The memory addresses used by a program on a peripheral card differ
depending on which expansion slot the card is installed in. Before it can
refer to any of those addresses, the program must somehow determine the
correct slot number. One way to do this is to execute a JSR (jump to
subroutine) to a location with an RTS (return from subroutine) instruction
init, and then derive the slot number from the return address saved on the
stack, as shown in the following example.

PHP ; save status

SE1 inhibit interrupts

JSR KNOWNRTS -» a known RTS instruction...
...that you set up

Ge wE wn wE wE uE o w

TSX get high byte of the...

LDA $0188,X ...return address from stack
AND #$BF low-order digit is slot no.
PLP restore status

The slot number can now be used in addressing the memory allocated to the
peripheral card, as shown in the next section.

1/0O Addressing

Feaea—e—s— =

Once your peripheral-card program has the slot number, the card can use
the number to address the I/0 locations allocated to the slot. Table 6-4
shows how these locations are related to sixteen base addresses starting
with $C080. Notice that the difference between the base address and the
desired 1/0 location has the form $n0, where n is the slot number. Starting
with the slot number in the accumulator, the following example computes
this difference by four left shifts, then loads it into an index register and
uses the base address to specify one of sixteen 1/0 locations.

ASL ; get n into...

ASL ;

ASL H

ASL i «..high-order nybble...
TAX H . of index register.

LDA $CP8BA,X ; load from first I/0 location

Chapter 6: Programming for Peripheral Cards

See the section “Setting Bank Switches” in
Chapter 4 for more information.

Table 6-4. Peripheral-Card [/0 Base Addresses

Selecting Your Target: Youmust make sure that you get an
appropriate value into the index register when you address I/0 locations
this way. For example, starting with 1 in the accumulator, the
instructions in the above example perform an LDA from location $C090,
the first [/0 location allocated to slot 1. If the value in the accumulator
had been 0, the LDA would have accessed location SC080, thereby setting
the soft switch that selects the second bank of RAM at location $D000
and enables it for reading.

Base
Address

$CO80
$C081
$C082
3C083
50084
$C085
$C086
$C087
$C088
$C089
$C08A
$C08B
$C08C
$C08D
$COSE
SCO8F

1
$C090
$C091
$C092
$C093
5C094
50095
$C096
$C097
3C098
$C099
$CO9A
$C09B
$C09C
$C09D
$CO9E
$C09F

2
$COAD
$COAL
$C0A2
$C0A3
$C0A4
$C0A5
$COAB
$C0AT
$C0A8
$COAY
SCOAA
$COAB
$COAC
$COAD
$COAE
$COAF

1/0 Programming Suggestions

Connector Number

3

3COB0
$COB1
$COB2
$COB3
$COB4
$COB5
$C0B6
5COBT
$COBS
$COBY
$COBA
SCOBB
SCOBC
SCOBD
SCOBE
3COBF

4

3C0CO
5C0C1
$C0C2
$COC3
$C0C4
$COC5
$COC6
$COCT
SCOC8
$C0CH
$COCA
$COCB
$C0CC
$COCD
SCOCE
$COCF

5

$CODO
SCOD]
$C0D2
$CoD3
$COD4
$COD5
$COD6
$COD7
SCOD8
$COD9
$CODA
$CODB
$CODC
$CODD
$CODE
$CODF

6

$COED
$COE1
$COE2
$COE3
$COE4
$COES
$COEB
SCOET
SCOES
$COE9
$COEA
3COEB
$COEC
$COED
$COEE
$COEF

7

$COF0
$COF1
SCOF2
$COF3
5C0F4
$COFD
$COF6
$COFT7
$COF8
$COF9
SCOFA
$COFB
3COFC
$COFD
$COFE
$COFF

137

RAM Addressing

e

A program on a peripheral card can use the eight base addresses shown in
Table 6-3 to access the eight RAM locations allocated for its use. The
program does this by putting its slot number into the Y index register and
using indexed addressing mode with the base addresses. The base
addresses can be defined as constants because they are the same no matter
which slot the peripheral card occupies.

If you start with the correct slot number in the accumulator (by using the
example shown earlier), then the following example uses all eight RAM
locations allocated to the slot.

TAY

LDA $0478,Y
STA $84F8,Y
LDA $8578,Y
STA $@5F8,Y
LDA $8678,Y
STA $06F8,Y
LDA $8778,Y
STA $07F8,Y

AWarning | Youmust be very careful when you have vour peripheral-card program
store data at the base-address locations themselves since they are
temporary storage locations; the RAM at those locations is used by the
disk operating system. Always store the first byte of the ROM location of

| the expansion slot that is currently active (8Cn) in location $7F8, and the
first byte of the ROM location of the slot holding the controller card for
the startup disk drive in location $5F8.

138 Chapter 6: Programuming for Peripheral Cards

See “The Standard 1/0 Links” in Chapter 3.

COUT1 and BASICOUT are described in
Chapter 3.

KEYIN and BASICIN are deseribed in
Chapter 3.

Changing the Standard 1/O Links

e e s saeses o aeinlen]

There are two pairs of locations in the Apple Ile that are used for controlling
character input and output. They are called the /0 links. In a Apple Ile
running without a disk operating system, the /0 links normally contain the
starting addresses of the standard input and output routines—KEYIN and
COUT1 if the 80-colurnn firmware is not active, BASICIN and BASICOUT if
the 80-column is active. If a disk operating system is running, one or both of
the links will hold the addresses of the operating system input and output
routines.

The link at locations $36 and $37 (decimal 54 and 55) is called CSW, for
character output switch. Individually, location $36 is called CSWL (CSW
Low) and location $37 is called CSWH (CSW High). CSW holds the starting
address of the subroutine the Apple Ile is currently using for
single-character output. This address is normally $FDF0, the address of
routine COUT1, or $C307, the address of BASICOUT.

When you issue a PR#n from BASIC or an n from the
Monitor, the Apple Ile changes this link address to the first address in the
ROM memory space allocated to slot number n. That address has the form
$Cn00. Subsequent calls for character output are thus transferred to the
program on the peripheral card. That program can use the instruction
sequences given above to find its slot number and use the [/0 and RAM
locations allocated to it. When it is finished, the program can execute an
RTS (return from subroutine) instruction to return control to the calling
program, or jump to the output routine COUT1 at location $FDFO0 to display
the output character (which must be in the accumulator) on the screen,
then let COUT1 return to the calling program.

A similar link at locations $38 and $39 (decimal 56 and 57) is called KSW,
for keyboard input switch. Individually, location $38 is called KSWL (for
KSW low) and location $39 is called KSWH (KSW high). KSW holds the
starting address of the routine currently being used for single-character
input. This address is normally $FD1B, the starting address of KEYIN, or
$C305, the address of BASICIN.

[/0 Programming Suggestions 139

Important!

See the ProDOS Technical Reference
Manual for more about using link
addresses,

Refer to the section on input and output
link registers in the DOS Programmer's
Manual and the ProDOS Technical
Reference Manual for further details.

When you issue an IN#n command from BASIC or an n from
the Monitor, the Apple Ile changes this link address to $Cn00, the beginning
of the ROM memory space that is allocated to slot number n, Subsequent
calls for character input are thus transferred to the program on the
accessory card. That program can use the instruction sequences given
above to find its slot number and use the I/0 and RAM locations allocated
to it. The program should put the input character, with its high bit set, into
the accumulator and execute an RTS instruction to return control to the
program that requested input.

When a disk operating system (ProDOS or DOS 3.3) is running, one or both
of the standard I/0 links hold addresses of the operating system’s input and
output routines. The operating system has internal locations that hold the
addresses of the character input and output routines that are currently
active.

If a program that is running with ProDOS or DOS 3.3 changes the
standard link addresses, either directly or via IN# and PR# commands,
the operating system is disconnected.

To avoid disconnecting the operating system each time a BASIC program
initiates [/0 to a slot, it should use either an IN# or a PR# command from
inside a PRINT statement that starts with a Control-D character. For
assembly-language programs, there is a DOS 3.3 subroutine call to use when
changing the link addresses. After changing CSW or KSW, the program calls
this subroutine at location S03EA (decimal 1002). The subroutine transfers
the link address to a location inside the operating system and then restores
the operating system address in the standard link location.

Other Uses of /O Memory Space

140

P e A S e e e
The portion of memory space from location $C000 through $CFFF (decimal
49152 through 53247) is normally allocated to I/0 and program memory on
the peripheral cards, but there are two other functions that also use this
memory space: the built-in self-test firmware and the 80-column display
firmware. The soft switches that control the allocation of this memory
space are described in the next section.

Chapter 6: Programming for Peripheral Cards

Figure 6-3. 1/0 Memory Map

CFFF

€800
C700
€600
0500
C400
€300
€200
€100
C000

Peripheral
Expansion
ROM

Internal

ROM and
Peripheral
Expansion ROM

Slot 7 ROM

Slot 6 ROM

Slot 5 ROM

Slot 4 ROM

Slot 3 ROM

Internal ROM

Slot 2 ROM

Slot 1 ROM

Internal
ROM

Internal Soft Switches and Peripheral 1/0

Switching 1/0 Memory

The built-in firmware uses two soft switches to control the allocation of the
1/0 memory space from $C000 to SCFFF. The locations of these soft

switches, SLOTCXROM and SLOTC3ROM, are given in Table 6-5.

Note: Like the display switches described in Chapter 2, these soft
switches share their locations with the keyboard data and strobe
functions. The switches are activated only by writing, and the states can

be determined only by reading, as indicated in Table 6-5.

Other Uses of I/0 Memory Space

Table 6-5. 1/0 Memory Switches

Location
Name Function Hex Decimal Notes
SLOTC3ROM Slot ROM at $C300 $CO0B 49163 -16373 Write

Internal ROM at $C300 SCO0A 49162 -16374 Write
Read SLOTC3ROM switch ~ $C017 49175 -16361 Read

SLOTCXROM Slot ROM at $Cx00 §C006 49159 -16377 Write
Internal ROM at $Cx00 $C007T 49158 -16378 Write
Read SLOTCXROM switch ~ $CO15 49173 -16363 Read

When SLOTC3ROM is on, the 256-byte ROM area at $C300 is available to a
peripheral card in slot 3, which is the slot normally used for a terminal
interface. If a card is installed in the auxiliary slot when you turn on the
power or reset the Apple Ile, the SLOTSROM switch is turned off. Turning
SLOTC3ROM off disables peripheral-card ROM in slot 3 and enables the
built-in 80-column firmware, as shown in Figure 6-3. The 80-column
firmware is assigned to slot-3 address space because slot 3 is normally used
with a terminal interface, so the built-in firmware will work with programs
that use slot 3 this way.

The bus and /0 signals are always available to a peripheral card in slot 3,
even when the 80-column hardware and firmware are operating. Thus it is
always possible to use this slot for any 1/0 peripheral that does 7ot have
built-in firmware.

When SLOTCXROM is active (high), the /0 memory space from $C100 to
$CTFF is allocated to the expansion slots, as described previously. Setting
SLOTCXROM inactive (low) disables the peripheral-card ROM and selects
built-in ROM in all of the I/0 memory space except the part from $C000 to
$COFF (used for soft switches and data I/0), as shown in Figure 6-3. In
addition to the 80-column firmware at $C300 and $C800, the built-in ROM
includes firmware that performs the self-test of the Apple Ile’s hardware.

Note: Setting SLOTCXROM low enables built-in ROM in all of the [/0
memory space (except the soft-switch area), including the $C300 space,
which contains the 80-column firmware.

Chapter 6: Programming for Peripheral Cards

Developing Cards for Slot 3

e s e e i e b (o a SLUNUN, []

Original lle In the original Apple Ile firmware, the internal slot 3 firmware was
always switched in if there was an 80-column card (either 1K or 64K) in
the auxiliary slot. This means that peripheral cards with their own ROM
were effectively switched out of slot 3 when the system was turned on.

With the enhanced Apple Ile Monitor ROM, the rules are different. A
peripheral card in slot 3 is now switched in when the system is started up or
when is pressed #f the card’s ROM has the following ID bytes:

$C305 = $38
$C307 = $18

The enhanced Apple Ile firmware requires that interrupt code be present in
the $C3 page (either external or internal). A peripheral card in slot 3 must
have the following code to support interrupts. After this segment, the code
continues execution in the internal ROM at $C400.

$C3F4: IRQDONE STA $C0O81 ;Read ROM, write RAM
JMP $FC7A yJump to $F8 ROM
IRQ
BIT $CO015 sslot or internal ROM
STA s$Ce@@7 ;jforce in internal ROM

When programming for cards in slot 3:
o You must support the AUXMOVE and XFER routines at $C312 and

$C314.
For more information about the $C300 o Don’t use unpublished entry points into the internal $Cn00 firmware,
firmware, see the Mﬂﬂitﬂl; F;OM lisiiilllg in because there is no guarantee that they will stay the same.
Appendix [of this manual. Especially note ; : : -
the portion from $C300 through $C420. o If your peripheral card is a character /0 device, you must follow the

Pascal 1.1 firmware protocol, described in the next section.

Developing Cards for Slot 3 143

Pascal 1.1 Firmware Protocol

The Pascal 1.1 firmware protocol was originally developed to be used with
Apple Pascal 1.1 programs. The protocol is followed by all succeeding
versions of Apple 11 Pascal, and can be used by programmers using other
languages as well.

The Pascal 1.1 firmware protocol provides Apple Ile programmers with

o astandard way to uniquely identify new peripheral cards
o astandard way to address the firmware routines in peripheral cards,

Device ldentification
sy e S i e

The Pascal 1.1 firmware protocol uses four bytes near the beginning of the
peripheral card’s firmware to identify the peripheral card.

Address Value

$Cs05 $38 (like the old Apple II Serial Interface Card)
$Cs07 $18 (like the old Apple II Serial Interface Card)
$CsOB $01 (the generic signature of new cards)
$Cs0C $ci (the device signature)

The first hexadecimal digit, ¢, of the device signature byte identifies the
device class and the second hexadecimal digit, i, of the device signature
byte is a unique identifier for the card, used by some manufacturers for
their cards. Table 6-6 shows the device class assignments.

Table 6-6. Peripheral-Card Device-Class Assignment

Digit Device Class
$0 Reserved

$1 Printer

$2 Joystick or other X-Y input device
8 Serial or parallel [/0 card

$4 Modem

55 Sound or speech device

36 Clock

87 Mass storage device

$8 80-column card

$9 Network or bus interface

$A Special purpose (none of the above)

$B-F Reserved for future expansion

Chapter 6: Programming for Peripheral Cards

For example, the Apple II Super Serial Card has a device signature of $31:
the 3 signifies that it is a serial or parallel 1/0 card, and the 1 is the
low-order digit supplied by Apple Technical Support.

Although version 1.1 of Pascal ignores the device signature, applications
programs can use them to identify specific devices.

1/O Routine Entry Points

ISeee———————— o |

Indirect calls to the firmware in a peripheral card are done through a
branch table in the card'’s firmware. The branch table of 1/0 routine entry
points is located near the beginning of the Cs00 address space (s being the
slot number where the peripheral card is installed).

The branch table locations that Pascal 1.1 firmware protocol uses are as
follows:

Address Contains

$Cs0D Initialization routine offset (required)
$CsOE Read routine offset (required)

$CsOF Write routine offset (required)

$Cs10 Status routine offset (required)

$Cs11 $00 if optional offsets follow; non-zero if not
$Cs12 Control routine offset (optional)

$Cs13 Interrupt handling routine offset (optional)

Notice that $Cs11 contains $00 only if the control and interrupt handling
routines are supported by the firmware. (For example, the SSC does not
support these two routines, and so location $Cs11 contains a non-zero
firmware instruction.) Apple II Pascal 1.0 and 1.1 do not support control and
interrupt requests, but such requests are implemented in Pascal 1.2 and
later versions and in ProDOS.

Pascal 1.1 Firmware Protocol 145

Table 6-7 gives the entry point addresses and the contents of the 65002
registers on entry to and on exit from Pascal 1.1 1/0 routines.

Table 6-7. 1/0 Routine Offsets and Registers Under Pascal 1.1 Protocol

Addr. Offset for X Register Y Register A Register
$Cs0D Initialization

On entry $Cs §s0

On exit Error code (unchanged) (unchanged)
$CsOE Read

On entry 5Cs $s0

On exit Error code (unchanged) Character read
$CsOF Write

On entry $Cs 3s0) Char. to write

On exit Error code (unchanged) (unchanged)
$Cs10 Status

On entry $Cs $s0 Request (0 or 1)

On exit Error code (changed) (unchanged)

Interrupts on the Enhanced Apple lie

For more about interrupt support in
ProDOS, see the ProDOS Technical
Reference Manual.

For information about interrupt handling
with Apple Pascal 1.2, see the Device and
Interrupt Support Tools Manual which
is part of the Apple I Device Support Tools
package (A2W0014).

The original Apple Ile offered little firmware support for interrupts. The
enhanced Apple Ile’s firmware provides improved interrupt support, very
much like the Apple Ilc’s interrupt support. Neither machine disables
interrupts for extended periods.

Interrupts work on enhanced Apple lle systems with an installed 80-column
text card (either 1K or 64K) or a peripheral card with interrupt-handling
ROM in slot 3. Interrupts are easiest to use with ProDOS and Pascal 1.2
because they have interrupt support built in. DOS 3.3 has no built-in
interrupt support.

The new interrupt handler operates like the Apple Ilc interrupt handler,
using the same memory locations and operating protocols. The main
purpose of the interrupt handler is to support interrupts in any memory
configuration. This is done by saving the machine’s state at the time of the
interrupt, placing the Apple in a standard memory configuration before
calling your program’s interrupt handler, then restoring the original state
when your program's interrupt handler is finished.

Chapter 6: Programming for Peripheral Cards

What Is an Interrupt?
e e ey

An interrupt is a hardware signal that tells the computer to stop what it is
currently doing and devote its attention to a more important task. Print
spooling and mouse handling are examples of interrupt use, things that
don't take up all the time available to the system, but that should be taken
care of promptly to be most useful.

For example, the Apple Ile mouse can send an interrupt to the computer
every time it moves. If you handle that interrupt promptly, the mouse
pointer's movement on the screen will be smooth instead of jerky and
unevern.

Interrupt priority is handled by a daisy-chain arrangement using two pins,
INT IN and INT OUT, on each peripheral-card slot. As described in
Chapter 7, each peripheral card breaks the chain when it makes an
interrupt request. On peripheral cards that don't use interrupts, these pins
should be connected together.

The daisy chain gives priority to the peripheral card in slot 7: if this card
opens the connection between INT IN and INT OUT, or if there is no card in
this slot, interrupt requests from cards in slots 1 through 6 can’t get
through. Similarly, slot 6 controls interrupt requests (IRQ) from slots 1
through 5, and so on down the line.

When the IRQ’ line on the Apple Ile's microprocessor is activated (pulled
low), the microprocessor transfers control through the vector in locations
$FFFE-$FFFF. This vector is the address of the Monitor's interrupt handler,
which determines whether the request is due to an external IRQ or a BRK
instruction and transfers control to the appropriate routine via the vectors
stored in memory page 3. The BRK vector is in locations $03F0-$03F1 and
ProDOS uses the IRQ vector in locations $03FE-$03FF. (See Table 4-11.)
The Monitor normally stores the address of its reset routine in the IRQ
vector; you should substitute the address of your program’s
interrupt-handling routine.

Apple Pascal doesn’t use the BRK vector at S03F0-$03F1, but it does use the
IRQ vector at $03FE-$03FF.

Interrupts on the Enhanced Apple Ile 147

Interrupts on Apple Il Series Computers
T O e I B T e Y e e e d |

The interrupt handler built in to the enhanced Apple lle’s firmware saves
the contents of the accumulator on the stack. (The original Apple Ile saves
the contents of the accumulator at location $45.) DOS 3.3, as well as the
Monitor, rely on the integrity of location $45, so this change lets both

DOS 3.3 and the Monitor continue to work with active interrupts on the
enhanced Apple Ile.

Original lle Since the built-in interrupt handler on the original Apple Ile uses location
$45 to save the contents of the accumulator, the operating system fails
when an interrupt occurs under DOS 3.3 on the original Apple Ile.

If you want to write programs that use interrupts while running on the
original Apple Ile, Apple II Plus, or Apple II, you must use either ProDOS
or Apple II Pascal 1.2 (or later versions). Both these operating systems
give you full interrupt support, even though these versions of the Apple II
don't include interrupt support in their firmware. (Versions of Pascal
before 1.2 do not work with interrupts enabled on an original Apple Ile.)

Some other manufacturer’s hardware, such as co-processor cards, don’t
work properly in an interrupting environment. If you are trying to develop
an application and encounter this problem, check with the manufacturer of
the card to see if a later version of the hardware or its software will operate
properly with interrupts active. You may not be able to use interrupts if an
interrupt-tolerant version isn't available.

Interrupts are effective only if they are enabled most of the time. Interrupts
that occur while interrupts are disabled will not be serviced.

Pascal, DOS 3.3, and ProDOS turn off interrupts while performing disk
operations because of the critical timing of disk read and write operations.
Some peripheral cards used in the Apple Ile disable interrupts while reading
and writing.

Original lle Although the enhanced Apple Ile firmware never disables interrupts
during screen handling, the original Apple Ile periodically turns
interrupts off while doing 80-column screen operations. The effect is most
noticeable while the screen is scrolling.

148 Chapter 6: Programming for Peripheral Cards

important!

Important!

See the section “Developing Cards for
Slot 3" earlier in this chapter.

Don't use PR#6 to restart your Apple Ile while running ProDOS with
interrupts enabled since PR#6 doesn't disable interrupts. If you try it,
ProDOS will fail as it starts up since its interrupt handlers aren’t yet set
up. If you have to restart, use [CONTROL H RESET), or make sure that your
program disables interrupts before it ends,

Rules of the Interrupt Handler
BT T T e pee s e o e ey

Unlike the Apple Ilc, the enhanced Apple Ile’s interrupt handling firmware
is not always switched in. Here are the reasons why this is so and the
implications that necessarily follow.

There is 70 part of memory in the Apple Ile that is always switched in.
Thus, there is no location for an interrupt handler that works for all
memory configurations. However, the $C3 page of firmware is present on all
systems that have 80-column text cards in their auxiliary slots, so it was
selected as the starting location of the built-in interrupt handling routine.

There are two factors that determine if the $C3 firmware is switched in and
therefore whether or not interrupts will be usable:

o Is there an 80-column text card in the auxiliary slot?

o If not, is there a peripheral card in slot 3 with built-in ROM with bytes
$C305 = $38 and $C307 = $18?

The Apple Ile’s memory is switched according to the following rules at both
powerup and reset:

o If there is a ROM card in slot 3, but no text card in the auxiliary slot, the
firmware on the ROM card is switched in. This is necessary for Pascal to
work.

o If there is a text card in the auxiliary slot, but no ROM card in slot 3, the
internal $C3 firmware is switched in.

o If there is both a text card in the auxiliary slot and a ROM card in slot 3,
the firmware on the ROM card is switched in.

These rules mean that systems without 80-column text cards in the
auxiliary slot do not have their internal $C3 firmware switched in. Such
systems cannot handle interrupts or breaks (the software equivalent of
interrupts). An application program must swap in the $C3 firmware both
on initialization and after reset to make interrupts function properly on
such a machine configuration. (ProDOS versions 1.1 and later do this for
you during startup.)

Interrupts on the Enhanced Apple Ile 149

150

Another implication of the decision to have interrupt code in the $C3 page
affects the shared $C800 space in the Apple Ile. When the $C3 page is
referenced, the Ile hardware automatically switches in its own $C800
space. When the interrupt handler finishes, it restores the $C800 space to
the original owner using MSLOT (507F8). This means that it is very
important for a peripheral card to place its slot address in MSLOT to support
interrupts while code is being executed in its $C800 space.

Interrupt Handling on the 65C02 and 6502
e n e s nueeEs s e e e e ey

There are three possible conditions that will allow interrupts on the 65C02
and 6502:

o The IRQ line on the microprocessor is pulled low after a CLI instruction
has been used (interrupts are not masked). This is the standard
technique that devices use when they need immediate attention.

o The microprocessor executes a break instruction (BRK = opcode $00).

O A non-maskable interrupt (NMI) occurs. The microprocessor services
this interrupt whether or not the CLI instruction has been used. An NMI
is completely independent of the interrupts discussed in this manual.

The microprocessor saves the current program counter and status byte on
the stack when an interrupt occurs and then juraps to the routine whose
address is stored in SFFFE and $FFFF. The sequence of operations
performed by the microprocessor is as follows:

1. It finishes executing the current instruction if an IRQ is encountered. (If
a BRK instruction is encountered, the current instruction is already
finished.)

It pushes the high byte of the program counter onto the stack.

[t pushes the low byte of the program counter onto the stack.

[t pushes the processor status byte onto the stack.

It executes a JMP ($FFFE) instruction.

O g 219

The Interrupt Vector at $FFFE

Three separate regions of memory contain address $FFFE in an Apple Ile
with an Extended 80-Column Text Card: the built-in ROM, the
bank-switched memory in main RAM, and the bank-switched memory in
auxiliary RAM. The vector at SFFFE in the ROM points to the built-in
interrupt handling routine. You must copy the ROM’s interrupt vector to the
other banks yourself if you plan to use interrupts with the bank-switched
memory switched in.

Chapter 6: Programming for Peripheral Cards

Interrupt handler installation is described
in the ProD0S Technical Reference
Manual and the Device and Interrupt
Support Tools Manual, which is part of
the Apple Ile Device Support Tools package
(A2W0014).

The Built-in Interrupt Handler

The enhanced Apple 1le’s built-in interrupt handler records the computer’s
current memory configuration, then sets the computer’s memory
configuration to a standard state so that your program’s interrupt handler
always begins running in the same memory configuration.

Next the built-in interrupt handler checks to see if the interrupt was caused
by a break instruction, and handles it as just described under “Interrupt
Handling on the 65C02 and 6502." If it was not a break, it passes control to
the interrupt handling routine whose address is stored at $3FE and $3FF of
main memory. Normally, that would be the operating system'’s interrupt
handler, unless you have installed one of your own.

After your program’s interrupt handler returns (with an RTI), the built-in
interrupt handler restores the memory configuration, and then does another
RTI to return to where it was when the interrupt occurred. Figure 6-4
illustrates this entire process. Each of these steps is explained later in this
chapter.

Figure 6-4. Interrupt-Handling Sequence

Interrupted
Program Processor Built-in Handler User’s Handler

Program — Push Address
Push Status
JMP ($FFFE) — Save old and set new
memory configuration

If BRK, then go to break
handler ($FA4T7).

Our interrupt?
NO: Push Address
Push Status
JMP ($3FE) —> Handle interrupt

Y

YES: Handle it.

Restore memory <— RTI
configuration

Pull Status <=—— RTI
Program <¢— Pull Address

Interrupts on the Enhanced Apple I[le 1581

Important!

Saving the Apple lle’s Memory Configuration
[E..=——————————— - LT

The built-in interrupt handler saves the Apple Ile's memory configuration
and then sets it to a known state according to these rules:

o Text Page 1 is switched in (PAGE2 off) so that main screen holes are
accessible if 80STORE and PAGEZ2 are on.

o Main memory is switched in for reading (RAMRD off).

o Main memory is switched in for writing (RAMWRT off),

o $D000-SFFFF ROM is switched in for reading (RDLCRAM off).
o Main stack and zero page are switched in (ALTZP off).

o The auxiliary stack pointer is preserved, and the main stack pointer is
restored. (See the next section, “Managing Main and Auxiliary Stacks.”)

Because main memory is switched in, all memory addresses used later in
this chapter are in main memory unless otherwise specified.

Managing Main and Auxiliary Stacks
ettt g VR o ey R By —C |

Apple has adopted a convention that allows the Apple Ile to be run with two
separate stack pointers since the Apple Ile with an Extended 80-Column
Text Card has two stack pages. Two bytes in the auxiliary stack page are
used as storage for inactive stack pointers: $0100 for the main stack pointer
when the auxiliary stack is active, and $0101 for the auxiliary stack pointer
when the main stack is active.

When a program using interrupts switches in the auxiliary stack for the
first time, it must place the value of the main stack pointer at $0100 (in the
auxiliary stack) and initialize the auxiliary stack pointer to $FF (the top of
the stack). When it subsequently switches from one stack to the other, it
must save the current stack pointer before loading the pointer for the other
stack.

The current stack pointer is stored at $0101, and the main stack pointer is
retrieved from $0100 when an interrupt occurs while the auxiliary stack is
switched in. Then the main stack is switched in for use. The stack pointer
is restored to its original value after the interrupt has been handled.

Chapter 6: Programming for Peripheral Cards

*x & & &

—DONOOUHsEWN =

12
13
14
18
16
 lr

~N @

16

!
|

Important!

The built-in XFER routine does not support this procedure. If you are
using XFER to swap stacks, you must use code like the following to set up
the stack pointers and stack.

This example transfers control from a code segment running
using the main stack to one running using the aux stack.

XFERALT

PHP

PLA

SEI

TSX

STA SETALTZP
STX s188

LDX $181

TXS

PHA

PLP

LDA #DESTL
STA $3ED
LDA #DESTH
STA $3EE
SEC/CLC
BIT RTS
JMP XFER

STX $181
LDX $108
STA SETSTDZP

cLv

;preserve interrupt status in A
;jdisable interrupts

;save main stack pointer at $188
;and swap zero pages

snow restore aux stack pointer

;and interrupt status

;set destination address

;set direction of transfer
iV=1 for alt zero page (RTS=$68)
ydo transfer

To transfer control the other direction, change the following lines

;V=8 for main zp

Interrupts on the Enhanced Apple [le 153

The User’s Interrupt Handler at $3FE .
e R ey

If your program has an interrupt handler, it must place the entry address of

that handler at SO3FE. After it sets the machine to a standard state, the Ile’s .
internal interrupt handler transfers control to the routine whose address is
in the vector at $03FE.

It is very important for a peripheral card to place its slot address in MSLOT
to support interrupts whenever it is executing code in its $C800 space.
Whenever the $C3 page is referenced, the Ile automatically switches in its
own $C800 ROM space. When the interrupt handler finishes, it restores the
$C800 space to the original owner using MSLOT ($07F8).

Be careful to install interrupt handlers according to the rules of the
operating system that you are using. Placing the address of your
program’s interrupt handler at $03FE disconnects the operating system’s
\ interrupt handler.

The $03FE interrupt handler must do these things:

AWarning

1. Verify that the interrupt came from the expected source.
2. Handle the interrupt as desired.

3. Clear the appropriate interrupt soft switch.

4. Return with an RTI.

Here are some things to remember if you are dealing with programs that
must run in an interrupt enviroment:

o There is no guaranteed maximum response time for interrupts because
the system may be doing a disk operation that lasts for several seconds.

o Once the built-in interrupt handler is called, it takes at least 150 to
200 microseconds for it to call your interrupt handling routine. After your
routine returns, it takes 40 to 140 microseconds to restore memory and
return to the interrupted program.

o If memory is in the standard state when the interrupt occurs, the total
overhead for interrupt processing is about 150 microseconds less than if
memory is in the worst state. (The worst state is one that requires the
most work to set up for: 80STORE and PAGE2 on; auxiliary memory
switched in for reading and writing; bank-switched memory page 2 in the
auxiliary bank switched in for reading and writing; and internal $Cn00
ROM switched in).

o Interrupt overhead will be greater if your interrupt handler is installed
through an operating system'’s interrupt dispatcher. The length of delay
depends on the operating system, and on whether the operating system
dispatches the interrupt to other routines before calling yours.

154 Chapter 6: Programming for Peripheral Cards

Handling Break Instructions
== e = =g == 1]

The 65C02 treats a break instruction (BRK, opcode $00) just like a hardware
interrupt. After the interrupt handler sets the memory configuration, it
checks to see if the interrupt was caused by a break (bit 4 of the status byte
is set), and if it was, jumps to a break handling routine. This routine saves
the state of the computer at the time of the break as shown in Table 6-8.

Table 6-8. BRK Handler Information

Information Location
Program counter (low byte) $3A
Program counter (high byte) $3B
Encoded memory state $44
Accumulator $45
X register $46
Y register $47
Status register $48

Finally the break routine jurps to the routine whose address is stored at
$3F0 and $3F1.

The encoded memory state in location $44 is interpreted as shown in
Table 6-9.

Table 6-9. Memory Configuration Information

Bit7=1 if auxiliary zero page and auxiliary stack are switched in
Bit6=1 if 80STORE and PAGEZ both on

Bitb=1 if auxiliary RAM switched in for reading

Bit4=1 if auxiliary RAM switched in for writing

Bit3d=1 if bank-switched RAM being read

Bit2=1 if bank-switched $D000 Page 1 switched in and RAMREAD set
Bitl=1 if bank-switched $D000 Page 2 switched in and RAMREAD set
Bit0=1 if internal Cs ROM was switched in (Ile only)

H
;
G

Interrupts on the Enhanced Apple Ile

Interrupt Differences: Apple lle Versus Apple lic
0o s =i

If you are writing software for both the Apple Ile and the Apple Ilc, you
should know that there are several important differences between the
interrupts on the enhanced Apple Ile and those on the Apple Ilc. They are

O Inthe Ilc ROM, $FFFE points to $C803; in the Ile ROM, to $C3FA. To
ensure that the proper interrupt vectors are placed into the Language
Card RAM space, always copy them to the RAM from the ROM. (When
you initialize built-in devices on the Ilc, these vectors are automatically
updated).

o There is no shared $C800 ROM in the Ilc. Peripheral cards share this
space in the Ile. Thus it is crucial that the slot address of the peripheral
card using the $C800 space is stored in MSLOT ($07F8). When the
interrupt handler goes to the internal $C3 space, the Ile hardware
switches in its own $C800 space. When the interrupt handler finishes, it
restores the $C800 space to the slot whose address is in MSLOT.

o The Ilc $C800 space is always switched in. The enhanced Ile’s interrupt
handler preserves the state of the $C800-space switch and then switches
in the slot I/0 space. This means that when restoring the state of the
system using the value placed in location $44, break handling routines must
restore one more value on the Apple Ile than on the Apple [lc.

Chapter 6: Programming for Peripheral Cards

